期刊文献+

基于动态全潜结构投影的热连轧厚度监控 被引量:3

Strip thickness monitoring in hot strip mill processes based on dynamic total projection to latent structures(T-PLS) algorithm
下载PDF
导出
摘要 本文利用带钢热连轧生产过程的数据,采用动态全潜结构投影算法(T-PLS),建立了带钢厚度的动态模型.该模型对于厚度有良好的预测精度.利用动态T-PLS的优点,把过程变量空间分解为4个正交子空间.在不同的子空间中,可以对带钢厚度有关的故障进行监测.通过热连轧机3个典型故障的检测,充分验证了动态T-PLS在过程质量监控中的优良性能,加强了带钢热连轧过程的监控. By using the hot strip rolling process data, we build a dynamic model for strip thickness based on the dynamic total projection to latent structures (T-PLS) algorithm. This model has a high prediction-accuracy for the thickness. Taking the advantage of T-PLS, we decompose the process variable space into four orthogonal subspaces, in which the process fault related to thickness can be detected. Through the detection of three typical faults in hot strip mill processes, the excellent performances of the dynamic T-PLS algorithm in the process monitoring is fully validated, demonstrating the enhancement of the monitoring qualities of the hot strip mill process.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第11期1446-1451,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(61074085 61273173) 北京市自然科学基金资助项目(4122029) 北京市重点学科资助项目(XK100080537) 中央高校基本科研业务费资助项目(FRF-AS-11-004B FRF-SD-12-008B)
关键词 过程监控 故障检测 动态T-PLS 热连轧 process monitoring fault detection dynamic T-PLS hot strip mill
  • 相关文献

参考文献14

  • 1QIN S J. Statistical process monitoring: basics and beyond [J]. Jour- nal of Chemometrics, 2003, 17(8/9): 480 - 502.
  • 2KANO M, NAKAGAWA Y. Data-based process monitoring, process control, and quality improvement: recent developments and applica- tions in steel industry [J]. Computers & Chemical Engineering, 2008, 32(1): 12 - 24.
  • 3MACGRWGOR J E JAECKLE C, KIPARISSIDES C, et al. Process monitoring and diagnosis by multiblock PLS methods [J]. AIChE Journal, 1994, 40(5): 826 - 838.
  • 4KOURTI T, NOMIKOS E MACGREGOR J E Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS [J]. Journal of Process Control, 1995, 5(4): 277 - 284.
  • 5QIN S J, VALLE S, PIOVOSO M J. On unifying multiblock analysis with application to decentralized process monitoring [J]. Journal of Chemometrics, 2001, 15 (9): 715 - 742.
  • 6HELLAND K, BERNTSEN H E, BORGEN O, et al. Recursive al- gorithm for partial least squares regression [J]. Chemometrics and intelligent laboratory systems, 1992, 14(1/2/3): 129 - 137.
  • 7WOLD S. Exponentially weighted moving principal components analysis and projections to latent structures [J]. Chemometrics and Intelligent Laboratory Systems, 1994, 23(1): 149 - 161.
  • 8QIN S J. Recursive PLS algorithms for adaptive data modeling [J]. Computers and Chemical Engineering, 1998, 22(4/5): 503 - 514.
  • 9SHI R, MACGREGOR J. Modeling of dynamic systems using latent variable and subspace methods [J]. Journal of Chemometrics, 2000, 14(5/6): 423 - 439.
  • 10王魏,柴天佑,赵立杰.带有稳定学习的递归神经网络动态偏最小二乘建模[J].控制理论与应用,2012,29(3):337-341. 被引量:14

二级参考文献4

共引文献15

同被引文献18

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部