期刊文献+

n型硅/碳复合材料的制备及电化学性能研究 被引量:1

Preparation and electrochemical performance study of n-type-Si/C composites
下载PDF
导出
摘要 基于施主掺杂原理,制备了掺有微量磷元素的n型硅负极材料,为改善其循环性能,通过碳包覆的方法进一步制备了硅/碳复合锂离子电池负极材料。利用XRD、SEM、恒流充放电、交流阻抗谱(EIS)和循环伏安法(CV)等测试手段对所制n型硅及硅/碳复合材料的结构、形貌和电化学性能进行了表征分析。结果显示:所制n型硅具有与普通硅一致的晶体结构、良好的充放电平台、较高的容量以及很好的导电性,其电化学性能在碳包覆后有所改善,第一次放电比容量可达1 776.7 mAh/g,15次循环后仍可达1 000 mAh/g以上,库仑效率均保持在98%左右。 Based on the donor doping principle,phosphorus-doped n-type silicon anode material for lithium ion batteries was prepared.To improve the cycling performance of the n-type silicon anode material,n-type-Si/C composite anode material was prepared using the carbon coating method.The structure,morphology and electrochemical performance of the prepared n-type silicon and Si/C composite were characterized by using XRD and SEM and by performing constant current charge-discharge,electrochemical impedance spectroscopy(EIS) and cyclic voltammetry(CV) tests.The results show that the prepared n-type silicon possesses a same crystal structure to normal silicon,and shows a perfect charge-discharge platform,high capacity and good electrical conductivity.After coated with carbon,the electrochemical performance of the n-type silicon is improved.Its discharge capacity reaches 1 776.7 mAh/g in the first cycle and still remains at 1 000 mAh /g above after 15 cycles,while its coulomb efficiency is maintained at about 98%.
出处 《电子元件与材料》 CAS CSCD 北大核心 2013年第1期14-18,共5页 Electronic Components And Materials
关键词 N型硅 碳包覆 掺杂 锂离子电池 电化学性能 n-type silicon carbon-coated doping lithium-ion battery electrochemical performance
  • 相关文献

参考文献11

  • 1KASAVAJJULA U, WANG C S, APPLEBY A J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cell [J]. J Power Sources, 2007, 163: 1003-1039.
  • 2高鹏飞,杨军.锂离子电池硅复合负极材料研究进展[J].化学进展,2011,23(2):264-274. 被引量:35
  • 3RYU J H, KIM J W, SONG Y, et al. Failure modes of silicon powder negative electrode in lithium seeondary batteries [J]. Electroehem Solid-State Lett, 2004, 7(10): A 306-A 309.
  • 4HATCHARD T D, DAHN J R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon [J]. Electroehem Soc, 2004, 151 : A838-A842.
  • 5WANG W, DATTA M K, KUMTA P N. Silicon-based composite anodes for Li-ion rechargeable batteries [J]. Chem Mater, 2007, 17: 3229-3237.
  • 6MARANCHI J P, HEPP A F, KUMTA P N. High capacity, reversible silicon thin-film anodes for lithium-ion batteries [J]. Electroehem Solid-State Lett, 2003, 6: A198-A201.
  • 7GUO J C, SUN A, CHEN X L, et al. Cyclability study of silicon-carbon composite anodes for lithium-ion batteries using electrochemical impedane spectroscopy [J]. Electrochem Aeta, 2011, 56: 3981-3987.
  • 8LI H, HUANG X J, CHEN L Q, et al. The crystal structure evolution of nano-Si anode caused by lithium insertion and extraction at room temperature [J]. Solid State Ionies. 2000. 135: 181-191.
  • 9杜莉莉,庄全超,魏涛,史月丽,强颖怀,孙世刚.Si/C复合材料电极首次嵌锂过程的电化学阻抗谱研究[J].化学学报,2011,69(22):2641-2647. 被引量:6
  • 10YU P, HARAN B S, RITTER J A. Palladium-microencapsulated graphite as the negative electrode in Li-ion cells [J]. J Power Sources, 2000, 91: 107-117.

二级参考文献115

  • 1Armand M, Tarascon J. Nature, 2008, 451 (7179) : 652-657.
  • 2Boukamp B A, Lesh G C, Huggins R A. J. Electrochem. Soc. ,1981, 128 (4) : 725-729.
  • 3Megahed S, Scrosati B. J. Power Sources, 1994, 51 (1/2): 79-104.
  • 4HuggJns R A. J. Power Sources, 1999, 81 : 13-19.
  • 5Ryu J H, Kim J W, Sung Y E, Oh S M. Etectrochem. Solid State Lett., 2004, 7 (10): A306-A309.
  • 6Choi N, Yew K, Kim H, Kim S, Choi W. J. Power Sources, 2007, 172 ( 1 ) : 404-409.
  • 7Li H, Huang X, Chen L, Wu Z, Liang Y. Electrochem. Solid State Lett. , 1999, 2:547-549.
  • 8Ma H, Cheng F, Chen J, Zhao J, Li C, Tao Z, Liang J. Adv. Mater. , 2007, 19 (22) : 4067-4070.
  • 9Li H, Huang X J, Chen L Q, Zhou G W, Zhang Z, Yu D P, Mo Y J, Pei N. Solid State Ionics, 2000, 135 (1/4) : 181-191.
  • 10Cui L F, Ruffo R, Chan C K, Peng H, Cui Y. Nano Lett. , 2008, 9 (1) : 491-495.

共引文献39

同被引文献40

  • 1范丽,周艳伟,杨卫身,杨凤林.炭材料用作电吸附剂的研究与进展[J].新型炭材料,2004,19(2):145-150. 被引量:30
  • 2代凯,施利毅,方建慧,张登松,余昺鲲.碳纳米管电极电吸附脱盐工艺的研究[J].应用科学学报,2005,23(5):539-544. 被引量:20
  • 3杨慧云,王岐东,李斌.活性炭纤维电极用于NaCl溶液电容性除盐[J].北京工商大学学报(自然科学版),2006,24(2):9-12. 被引量:10
  • 4莫剑雄.电容吸附去离子方法的研究[J].水处理技术,2007,33(8):20-22. 被引量:17
  • 5H. B. Li. Electrosorptive Desalination byCarbon Nanotubes and Nanofibres Electrodes and Ion Exchange Membranes [ J ]. Water Research, 2008,27 (4) :253-258.
  • 6Y J Kim, J Hur, W Bae, et al. Desalination of brackish water containing oil compound by capacitive deionization process [ J ]. Desalination, 2010,253:119-123.
  • 7J Y Choi, J H Choi. A carbon electrode fabricated using a poly (vinylidene fluoride) binder controlled the Faradaic reaction of carbon powder [ J ]. Journal of Industrial and Engineering Chemistry. 2010,16 ( 8 ) :401-405.
  • 8J H Lee, H J Ahn, Y. S. Jeong, et al. Nanostructured carbon cloth electrode for desalination from aqueous solutions [ J ]. Materials Science and Engineering,2007,44(9) :841-845.
  • 9L. D. Zou, G. Morris, D. D. Qi. Using activated carbon electrode in electrosorptive deionisation of brackish water[ J]. Desalination,2008,225 ( 1 ) :329-340 .
  • 10H. B. Li. Electrosorptive Desalination by Carbon Nanotubes and Nanofibres Electrodes and Ion Exchange Membranes [ J ]. Water Research, 2008,27 (4) :253-258.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部