摘要
In this study, how to improve the stability of reduced manganese oxide ore was dis- cussed by investigating reoxidation conditions and kinetics mechanism in the cooling process of manganese dioxide ore reduced by biomass. The effects of the temperature and time, chip size of biomass, raw materials thickness and different additives on stability of the products were determined. The valence variation of manganese in ore and the reoxidation kinetics of reduced products were studied. The results show that decrease of reduction temperature and time, and increase of raw materials thickness and little H2SO4 additive are favorable for the stability of the reduced products. The kinetics mechanism of the reoxidation is controlled by diffusion with dynamic appar- ent activation energy of E1--25.10 kJ.mol-1, and conformation of manganese in the process is changed from MnO to Mn3O4.
In this study, how to improve the stability of reduced manganese oxide ore was dis- cussed by investigating reoxidation conditions and kinetics mechanism in the cooling process of manganese dioxide ore reduced by biomass. The effects of the temperature and time, chip size of biomass, raw materials thickness and different additives on stability of the products were determined. The valence variation of manganese in ore and the reoxidation kinetics of reduced products were studied. The results show that decrease of reduction temperature and time, and increase of raw materials thickness and little H2SO4 additive are favorable for the stability of the reduced products. The kinetics mechanism of the reoxidation is controlled by diffusion with dynamic appar- ent activation energy of E1--25.10 kJ.mol-1, and conformation of manganese in the process is changed from MnO to Mn3O4.
基金
supported by the National Natural Science Foundation of China(No.50874067)