期刊文献+

虚拟距离窄带活动轮廓模型

Narrow band active contour model based on virtual distance
下载PDF
导出
摘要 针对活动轮廓模型计算量大、演化收敛缓慢、效率低下的问题,提出了一种新颖的活动轮廓模型.该模型采用虚拟的符号距离函数代替真实的符号距离函数,依靠待检测目标物内外均值来驱动活动轮廓的演化,利用虚拟距离函数的梯度形成一个窄带,活动轮廓在窄带内做简单的加减运算演化.其演化具有计算简单、分割效率高、能自由改变拓扑、全局性的优点,初始化曲线也无须非常接近待检测物体的边缘.符号距离函数重新初始化也只需在窄带内使用高斯函数规则化后,对其取符号运算即可.最后给出了活动轮廓在窄带内收敛的一个简单条件,能方便地判断待检测目标是否被检测出来. Disadvantages of the active contour model with high computation cost, slow speed, and especially low efficiency are carefully researched and a novel active contour model is presented. The presented model replaces the real symbol distance function with the virtual symbol distance function, and the evolution of the active contour in presented model depends on the averages inside and outside the object. The gradient of the virtual distance function form a narrow band, where the active contour evolutes by simply adding and simply subtracting. Thus, the evolution has the following advantages: simple calculation, high-efficiency segmentation, free topology, and global property. The virtual symbol distance function is re-initialized with sign function after the virtual symbol distance function is regularized by the Gaussian func- tion within a narrow band. In addition, a simple condition is given for the active contour convergence within the narrow band and it is easy to judge whether the object has been detected.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2012年第6期563-568,576,共7页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金(41171329 41071260) 海洋公益科研专项项目(201305002) 大连海事大学科研基础业务费~~
关键词 活动轮廓 重新初始化 图像分割 窄带 active contour re-initialization image segmentation narrow band
  • 相关文献

参考文献11

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models [ J ] . international Journal of Computer Vision. 1988,1(4): 321 -331.
  • 2Chan T F, Vese L A. Active contours without edges [J].IEEE Transactions on Image Processing. 2001,10(2) : 266 -277.
  • 3周则明,陈强,王平安,夏德深.基于窄带水平集的曲线演化与左心室MRI图像分割[J].计算机工程与应用,2003,39(27):46-48. 被引量:7
  • 4周则明,项杰,王洪元,何春.水平集方法中窄带构造技术[J].系统工程与电子技术,2007,29(7):1201-1204. 被引量:2
  • 5于洪川,王德军,唐泽圣,唐龙.水平集演化中的奇点与改进的窄带算法[J].软件学报,2003,14(4):811-817. 被引量:7
  • 6Li C, Xu C, Gui C, et al. Level set evolution without re- initialization: A new variational formulation: 2005 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition,2005 [ C]. Los Alamitos , CA, USA : Ieee, 2005 : 430 - 436.
  • 7李俊,杨新.图像偏微分方程的原理与应用.上海:上海交通大学出版,2003.
  • 8Xu C, Yezzi Jr A, Prince J L. On the relationship between parametric and geometric active contours: 34th Asilomar Conference,2oo0 [ C]. Pacific Grove, CA, United States: IEEE,2000:483 -489.
  • 9Shi Y, Karl W C. Real-time tracking using level sets: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005 [ C J. San Diego, CA, United States: Institute of Electrical and Electronics Engineers Computer Society, 2005 : 34 - 4l.
  • 10Perona P, Malik 1. Scale-space and edge detection using anisotropic diffusion [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1990, 12 (7): 629 - 639.

二级参考文献35

  • 1周则明,陈强,王平安,夏德深.结合模糊C均值聚类和曲线演化的心脏MRI图像分割[J].系统仿真学报,2005,17(1):129-133. 被引量:12
  • 2周则明,王元全,王平安,夏德深.基于水平集的3D左心室表面重建[J].计算机研究与发展,2005,42(7):1173-1178. 被引量:8
  • 3刁现芬,陈思平,梁长虹,汪元美.基于阈值区间的水平集算法在耳蜗分割中的应用[J].浙江大学学报(工学版),2006,40(2):262-266. 被引量:5
  • 4Kinkel K, Helbich T H, Esserman L J, et al. Dynamic high spatial-resolution MR imaging of suspicious breast lesions: Diagnostic criteria and inter observer variability[J]. AJR Am J Roentgenol, 2000, 175:35 -43.
  • 5Engeland S V, Snoeren P R, Huisman H, et al. Volumetric breast density estimation from full-field digital mammograms[J]. IEEE Transactions on Medical Imaging, 2006, 25(3):273 - 282.
  • 6赵斌.磁共振成像新技术对乳腺肿块临床应用研究[D].济南:山东大学,2004.
  • 7Yoo S K, Wang G, Rubinstein J, et al. Semi-automatic segmentation of the cochlea using real-time volume rendering and regional adaptive snake modeling [J]. Journal of Digital Imaging, 2001, 14(4): 173- 181.
  • 8Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(3): 266- 280.
  • 9[1]Osher S, Sethian J. Fronts propagating with curvature dependent speed: Algorithms based on the Hamilton-Jacobi formulation. Journal of Computational Physics, 1988,79(1):12~49.
  • 10[2]Chopp DL. Computing minimal surfaces via level set curvature flow. Journal of Computational Physics, 1993,106(1):77~91.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部