期刊文献+

调和平均、对数平均和反调和平均间的最佳不等式

An Optimal Inequality Between Harmonic,Logarithmic and Contraharmonic Means
下载PDF
导出
摘要 获得了使得不等式Cα(a,b)H1-α(a,b)<L(a,b)<βC(a,b)+(1-β)H(a,b)对所有a,b>0且a≠b成立的α和β的最佳值,其中C(a,b)、H(a,b)、L(a,b)分别为a,b的反调和平均、调和平均和对数平均. The best possible α and β were presented such that the double inequality Ca(a,b)H1-a(a,b)〈L(a,b)〈βC(a,b)+(1-β)H(a,b) held for all a,b 〉 Owith a≠b, where C(a,b) , H(a,b) , L(a, b) denoted the contraharmonie, harmonic and logarithmic means of a and b, respectively.
作者 王国阳
出处 《集美大学学报(自然科学版)》 CAS 2012年第6期465-468,共4页 Journal of Jimei University:Natural Science
关键词 对数平均 调和平均 反调和平均 logarithmic mean harmonic mean contraharmonic mean.
  • 相关文献

参考文献2

二级参考文献43

  • 1Alzer H. A power mean inequality for the gamma function. Monatsh Math, 2000, 131(3): 179-188.
  • 2Alzer H. Ungleichungen fiir Mittelwerte. Arch Math, 1986, 47(5): 422-426.
  • 3Alzer H. Ungleichungen f/Jr (e/a)^a(b/e)^b. Elem Math, 1985, 40:120- 123.
  • 4Alzer H, Janous W. Solution of problem 8^*. Crux Math, 1987, 13:173 -178.
  • 5Alzer H, Qiu S L. Inequalities for means in two variables. Arch Math, 2003, 80(2): 201-215.
  • 6Bullen P S, Mitrinovic D S, Vasic P M. Means and Their Inequalities. Dordrecht: D Reidel Publishing Co, 1988.
  • 7Burk F. The geometric, logarithmic, and arithmetic mean inequalities. Amer Math Monthly, 1987, 94(6): 527-528.
  • 8Carlson B C. The logarithmic mean. Amer Math Monthly, 1972, 79:615-618.
  • 9Chu Y M, Xia W F. Two sharp inequalities for power mean, geometric mean, and harmonic mean. J Inequal Appl, 2009:741923.
  • 10Guo B N, Qi F. A simple proof of logarithmic convexity of extended mean values. Numer Algorithms, 2009, 52:89- 92.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部