期刊文献+

基于ODNHP的毫米波探测器地面目标识别算法

Millimeter Wave Detector Ground Target Recognition Algorithm Based on ODNHP
下载PDF
导出
摘要 针对毫米波探测器识别地面目标时的强地杂波问题,在正交判别邻域保持投影(ODNPP)的基础上,提出正交判别邻域Hessian投影(ODNHP)算法。ODNHP在正交化约束和判别信息的基础上,利用样本的切空间坐标构造Hessian二次型矩阵,实现目标函数的优化。将ODNHP分别与NPP、ONPP和ODNPP进行了毫米波地面目标识别仿真实验,结果表明,ODNHP降低了杂波的影响,在较低的维数下实现更高的识别率。 In view of strong ground clutter when millimeter wave detector recognizing the ground object,based on the orthogonal discriminant neighborhood Hessian projection(ODNHP) algorithm,the orthogonal discriminant neighborhood keep projection(ODNPP) was presented.Introducing Hessian operator in ODNHP can ensure the optimization of object function basis on keeping information of ODNPP Boolean manipulation in restraint and discrimination.The experiment of millimeter wave detector ground target recognition simulation is respectively used the algorithms of NPP、ONPP、ODNPP and ODNHP.The results show that ODNHP can reduce the influence of clutters and get higher recognition rate at the lower dimension.
出处 《弹箭与制导学报》 CSCD 北大核心 2012年第6期183-186,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 国防预研基金资助
关键词 流形学习 毫米波探测器 地面目标识别 Hessian算子 manifold learning millimeter wave detector ground target recognition Hessian operator
  • 相关文献

参考文献8

  • 1Xuelian Yu, Xuegang Wang, Benyong Liu. A direct kernel uncorrelated discriminant analysis algorithtn[ J]. IEEE Sig- nal Processing Letters, 200'7, 14 (10) : 742 - 745.
  • 2Xuelian Yu, Xuegang Wang, Benyong Liu. Supervised ker- nel neighborhood preserving projections for radar target rec- ognition[ J]. Signal Processing, 2008, 88 (9) : 2335 - 2339.
  • 3Xuelian Yu, Xuegang Wang. Kernel uncorrelated neighbor- hood discriminative embedding for radar target recognition [ J ]. Electronics Letters, 2008, 44 (2) : 154 - 155.
  • 4Tenenbaum J B, Silva V, Langford J C. A global feometric framework for nonlinear dimensionality reduction [ J ]. Sci- ence, 2000, 290(5500): 2319-2323.
  • 5Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [ J ]. Science, 2000, 290 (5500) : 2323 - 2326.
  • 6M Belkin, P Niyogi. Laplacian eigenmaps for dimensionali- ty reduction and data representation [ J ]. Neural Computa- tion, 2003, 15(6) : 1373 - 1396.
  • 7D L Donoho, C Grimes. Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data[ J ]. Proceedings of the National Academy of Sciences, 2005, 102(21) : 7426 -7431.
  • 8Y W Pang, L Zheng, Z K Liu, et al. Neighborhood preser- ving projections (NPP) : a novel linear dimension reduction method[ C]// ICIC 2005, Part I, Lecture Notes in Com- puter Science, Springer, 2005 : 117 - 125.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部