期刊文献+

一类三阶拟线性微分方程非振动解的存在性 被引量:2

Existence of nonoscillatory solution to a class of third-order quasi-linear differential equations
下载PDF
导出
摘要 利用Schauder-Tychonoff不动点定理讨论一类三阶拟线性微分方程的振动性理论,分析此方程在满足特殊条件时,其非振动解的结构以及特殊非振动解存在的充分必要条件. Using the Schauder-Tychonoff fixed point theorem, the oscillation theory for a class of third- order quasi-linear differential equation was discussed. The structure of its non-oscillatory solutions was an- alyzed for the case when the equation satisfies specific condition and the necessary and the sufficient and necessary conditions for existence of specific no-oscillatory solutions to the equation were given.
作者 汪金燕
出处 《兰州理工大学学报》 CAS 北大核心 2012年第6期142-145,共4页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(61261044) 北方民族大学校内基金(2011Y023) 北方民族大学重点专项项目(2012XZK06)的资助
关键词 正值解 振动性理论 Schauder-Tychonoff不动点定理 positive solution oscillation theory Sehauder-Tychonoff fixed point theorem
  • 相关文献

参考文献5

二级参考文献20

  • 1[1]Kusano T,Naito M.Nonlinear oscillation of fourth order differential equations[J].Can J Math,1976,28:840-852.
  • 2[2]Kitamura Y.Characterization of oscillation of fourth order functional differential equations with deviating arguments[J].Ann Mat Pura Appl,1980,124:345-365.
  • 3[3]Wu F.Nonoscillatory solutions of fourth order quasilinear differential equations[J].Funkcial Ekvac,2002,45:71-88.
  • 4[4]Natio M,Wu F.A note on the existence and asymptotic behavior of nonoscillatory solution of fourth order quasilinear differential equation[J].Acta Math Hungar,2004,102:177-202.
  • 5[5]Wu F.Oscillation theory for fourth-order quasilinear differential equations and four-dimensional differential systems[M].[S.I.]:Dissertation,Ehime Univ,2001.
  • 6[6]Tanigawa.Asymptic analysis of positive soltion to second order quasilinear ordinary differential equations on infinite intervals[M].[S.I.]:Dissertation,Fukuoka Univ,1999.
  • 7[1]Atkinson F V.On second-order nan-linear oscillations[J].Amer J Math,1954:643-647.
  • 8[2]Kusano T,Naito Y.Oscillation and nonoseillaton criteria for second order quaailinear differential equations[J].Acta Math,1997,76(1/2):81-89.
  • 9[3]Tanigawa.Asymptic analysis of positive solution to second order quasilinear ordinary differential equations on infinite intervals[D].Fukuoka:Fukuoka University,1999.
  • 10[4]Fentao Wu.Oscillation theory for fourth-order quasilinear differential equations and Four-dimensional differential systems[D].Ehime:Ehime University,2001.

共引文献4

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部