期刊文献+

基于遗传算法的认知无线电网络共同信道和功率最优分配 被引量:6

Power and Channel Optimal Allocation for Cognitive Radio Networks Based on Genetic Algorithm
下载PDF
导出
摘要 信道分配和功率控制问题是认知无线电网络中的核心问题。文中根据不完美频谱感知情形下的干扰功率模型,建立认知无线电网络共同信道和功率分配优化模型,并通过罚函数法,将标称的混合整数规划问题简化为不带约束条件的非线性规划问题,提出了基于遗传算法的共同信道和功率最优分配算法。仿真结果表明,该算法能在不完美频谱感知情形下对信道和功率进行联合最优分配,减少对主用户功率干扰,实现网络中认知用户吞吐量的最大化。 Power control and channel allocation are central issues in the cognitive radio networks. Based on interference power model under imperfect spectrum sensing, an optimal mathematical model for com- mon channel and power allocation is presented in this paper. The model is a mixed integer program and difficult to get a numerical resolution. So, an intelligent optimal allocation approach is proposed to over- come this difficulty. Firstly, using penalty function to simplify the mathematical model, a nonlinear pro- gramming function without constrains can be obtained. Then, an optimal allocation approach based on ge- netic algorithm is presented. The proposed concept is evaluated by a simulation example. The simulation results demonstrate that the proposed algorithm can achieve the jointly optimal allocation for power control and channel resource, reduce the power interference for the primary user, and reach the maximum throughput of cognitive users under imperfect spectrum sensing.
作者 刘超 张顺颐
出处 《南京邮电大学学报(自然科学版)》 北大核心 2012年第6期74-79,共6页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家高技术研究发展计划(863计划)(2009AA01Z212 200901Z202) 国家自然科学基金(61003237) 江苏省高校自然科学基金(10KJB510018)资助项目
关键词 认知无线电 功率控制 信道分配 遗传算法 cognitive radio power control channel allocation genetic algorithm
  • 相关文献

参考文献11

  • 1NIE N, COMANICIU C. Adaptive channel allocation spectrum eti- quette for cognitive radio networks[ J]. Mobile Networks and Appli- cations,2006,11 (6) :779 - 797.
  • 2MICHAEL B, TANSU A, TAMER B. A stackelberg game for power control and channel allocation in cognitive radio networks [ C ] // Proceedings of the 2nd International Conference on Performance E- valuation Methodologies and Tools. 2007.
  • 3HOANG A T, LIANG Y C. Maximizing spectrum utilization of cogni- tive radio networks using channel allocation and power control [C]//IEEE 64th Vehicular Technology Conference. 2006:1202 - 1206.
  • 4DIGHAM F F. Joint power and channel allocation for cognitive ra- dios[ C ]//IEEE Wireless Communications and Networking Confer- ence. 2008:882 -887.
  • 5LEE W Y, AKYILDIZ I F. Joint spectrum and power allocation for inter-cell spectrum sharing in cognitive radio networks[ C]//IEEE Symposium on New Frontiers in Dynamic Spectrum Access Net- works. 2008:276 -287.
  • 6ZHU Yajnn, SUN Zhenqiang, WANG Wei, et al. Joint power and rate control considering fairness for cognitive radio network [ C ]/// IEEE Wireless Communications and Networking Conference. 2009.
  • 7I ALMALFOUH S M, STER G L. Interference-aware power alloca- tion in cognitive radio networks with imperfect spectrum sensing [ C]//IEEE International Conference on Communications. 2010.
  • 8CHEN Si, WYGLINSKI A M. Efficient spectrum utilization via cross-layer optimization in distributed cognitive radio networks [ J ]. Computer Communications,2009,32(18) :1931 -1943.
  • 9ELNAINAY M Y,FRIEND D H,MACKENZ1E A B. Channel allocation & power control for dynamic spectrum cognitive networks using a local- ized island genetic algorithm[ C] //IEEE Symposium on New Frontiers in Dynamic Spectrmn Access Networks. 2008:715 -719.
  • 10HOSHYAR R,SHARIAT M,TAFAZOLLI R. Subcarrier and power al- location with multiple power constraints in OFDMA systems[ J ]. IEEE Communications Letters,2010,14(7) :644 -646.

同被引文献47

  • 1侯勇严,孙瑜,郭文强.MATLAB在复杂电路分析中的应用研究[J].微计算机信息,2004,20(10):77-79. 被引量:17
  • 2张利,安霆,杨百顺.灰色关联故障诊断方法在模拟电路中的应用研究[J].中国测试技术,2006,32(4):39-40. 被引量:4
  • 3杨丽华,何雪峰.基于熵值法的贸易可持续发展指数——以浙江省的实证研究为例[J].宁波大学学报(人文科学版),2007,20(1):22-27. 被引量:33
  • 4潘建国.认知无线电技术的研究和进展[J].电视技术,2007,31(10):7-9. 被引量:8
  • 5Canales M, Gallego J R, Ciria R. Distributed Channel Alloca- tion and Power Control in Cognitive Radio Networks using Game Theory [ C ]. 2011 IEEE Vehicular Technology Conference, 2011 : 1 -5.
  • 6Hoszain M K, El- Saleh A A, Ismail M. A Comparison between Binary and Continuous Genetic Algorithm for Collaborative Spec- trum Optimization in Cognitive Radio Network[ C]. 2011 IEEE Conference on Research and Development, 2011:259 - 264.
  • 7Huixing Peng, Yuebin Bai, Xiaoxia Liu. End - to - End QoS Guaranteed Approach Using Multi - Object Genetic Algorithm in Cognitive MANETs[ C]. 2012 26th International Conference on Advanced Information Networking and Applications Workshops, 2012:938-943.
  • 8Huynh C K, Lee W C. Two - Dimensional Genetic Algorithm for OFDM - Based Cognitive Radio Systems[J]. 2011 IEEE 3rd In- ternational Conference on Communication Software and Networks (ICCSN), 2011:100-105.
  • 9Tandra R, Mishra M, Sahai A. What is a spectrum hole and what does it take to recognize one[J]. Proceeding of IEEE, 2009,97(5) : 824-848.
  • 10Grant M, Boyd S. CVX: Matlab software for disciplined convex programming, version2. 0 betaEEB/OL]. [2014- 11-27]http://cvxr. com/cvx/.

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部