期刊文献+

多传感器多机动目标跟踪的CPHD滤波算法 被引量:3

CPHD filter algorithm for multiple maneuvering target tracking with multi-sensors
原文传递
导出
摘要 针对单传感器在多机动目标跟踪系统中不能很好地处理目标数目变化与突发机动的问题,提出了多传感器多机动目标跟踪的概率假设密度滤波算法.以CPHD滤波算法为理论基础,同时递推概率假设密度(PHD)函数和基数分布,避免了多目标多传感器的数据关联问题.结合自适应当前统计模型,选择3个雷达作为跟踪目标的传感器,相比于单传感器降低了信息的模糊度,提高了可信度.仿真结果比较表明了多传感器CPHD滤波算法在多目标跟踪方面的性能优势. Cardinalized probability hypothesis density(CPHD) filter algorithm with multi-sensor for multiple maneuvering target tracking was proposed.This method was based on the CPHD filter algorithm,and the probability hypothesis density(PHD) function and the cardinality distribution were propagated at the same time to avoid the data association problem in multi-sensor for multiple target tracking.With the adaptive "current" statistical model,3 radars were chosen as target tracking sensors.Compared with the single sensor,the ambiguity of information was reduced and the reliability was advanced.The advantages of CPHD filter algorithm with multi-sensor for multiple maneuvering target tracking was verified to be more accuracy by the simulation results.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第12期70-74,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60834005)
关键词 目标跟踪 雷达 多传感器 多机动目标跟踪的概率假设密度(CPHD)滤波 随机集 自适应当前统计模型 target tracking radar multi-sensor CPHD filter random set adaptive current statistical model
  • 相关文献

参考文献4

二级参考文献33

共引文献37

同被引文献20

  • 1范小军,刘锋,秦勇,张军.基于STF的“当前”统计模型及自适应跟踪算法[J].电子学报,2006,34(6):981-984. 被引量:46
  • 2Akyildiz L F, Su W L. A survey on sensor networks [J]. IEEE Communications Magazine, A. 2002, 102- 104.
  • 3Mahler R. Random set theory for target tracking and identification, in Data Fusion Hand Book [Z]. Eds. Boca Raton, Fir: CRC Press, 2001:14/1 - 14/33.
  • 4Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter [J]. IEEE Transactions on Signal Processing, 2006, 54 (11): 4092-4094.
  • 5Mahler R P S. Multi-target Bayes filtering via first-order multi- target moments[J]. IEEE Transactions on Aerospace and Elec tronic Systems, 2003:1153 - 1156.
  • 6Mahler R, Zajic T. Multi-target filtering using a multi-target first-order moment statistic [A]. I. Kadar (Ed). Signal Process ing, Sensor Fusion, and Target Recognition X, SPIE Proceedings [C]. 2001: 184-195.
  • 7Hoffmann C, Dang T. Cheap joint probabilistic data association filters in an interacting multiple model design [C]// Multi-sensor Fusion and Integration forIntelligentSystems, Heidelberg, Germany, September3-6, 2006, 06: 197-202.
  • 8Mahler R. Statistical Multi-source Multi-target Information Fusion [M]. Boston: Artech House, 2007: 5-11.
  • 9Mahler R, Vo Ba-Tuong, Vo Ba-Ngu. CPHD filtering with unknown clutter rate and detection profile [J]. IEEE Transactions on Signal Processing(S4244-0567), 2011, 59(8): 3497-3513.
  • 10Mahler R. Multi-target Bayes filtering via first-order multi-target moments [J]. IEEE Transactions on Aerospace and Electronic Systems(S0018-9251), 2003, 39(4): 1152-1178.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部