期刊文献+

Gel’fand三元组上多分数Lévy过程(英文) 被引量:1

MULTI-FRACTIONAL LVY PROCESSES ON GEL FAND TRIPLE
下载PDF
导出
摘要 本文研究了Gel’fand三元组上多分数Lévy过程.通过将分数Lévy过程的参数替换为依赖于时间t的函数,从而定义了Gel’fand三元组上的多分数Lévy过程以及其一维边际分布和协方差函数. In this paper,we study the sample and distribution properties of multi-fractional Lévy processes on Gel'fand triple.By substituting the β parameter of fractional Lévy processes on Gel'fand triple by a function dependent on time,we define multi-fractional Lévy processes on Gel'fand triple and investigate their one demensional distributions and covariance function.
出处 《数学杂志》 CSCD 北大核心 2012年第6期1027-1032,共6页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China(11001051 10971076) the Foundation from China’s Ministry of Education(11YJA9100001)
关键词 Gel’fand三元组 多分数Lévy过程 Gel'fand triple fractional Lévy processes multifractional Lévy processes
  • 相关文献

参考文献8

  • 1Mandelbrot B, Van Vess J. Fractional Brownian motion, fractional noises and application [J]. SIAM Rev., 1968, 10: 427-437.
  • 2Biagini F, Hu Y. Oksendal B, Zhang T. Stochastic calculus for fractional Brownian motion and applications [M]. London: Springer, 2008.
  • 3Peltier R, L:vy-V:hel J. Multifractional Brownian motion: definition and preliminary results[R]. Inria Research Report, 1995, RR-2645.
  • 4Benassi A, Jaffard S, Roux D. Elliptic Gaussian random process [J]. Rev. Mat. Iberoamericana, 1997, 13(1): 19-89.
  • 5Huang Z, Lii X, Wan J. Fractional L@vy processes and noises on Gel'fand triple [J]. Stoch. Dyn., 2010, 10: 37-51.
  • 6Lii X, Huang Z, Wan J. Fractional L@vy processes on Gel and triple and stochastic integration [J]. Front. Math. China, 2008, 3: 287-303.
  • 7Samko S G, Kilbas A A, Marichev O I. Fractional integrals and derivatives: theory and applications [M]. Gordon and Breach, 1987.
  • 8Ayache A, Cohen S. The covariance structure of multifractional Brownian motion, with application to long range dependence[M]. Istambul: Acte de la Conference Icassp, 2000.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部