期刊文献+

某类差分方程亚纯解的增长性

GROWTH OF MEROMORPHIC SOLUTIONS OF CERTAIN DIFFERENCE EQUATIONS
下载PDF
导出
摘要 本文研究了某类差分方程的亚纯解的增长性问题及不存在可允许超越亚纯解的条件.运用Nevanlinna理论的基本方法,得到了当p(z)为多项式时此类差分方程亚纯解的级与下级的估计,并给出了一些例子说明这些结果是精确的. In this paper,we investigate order of growth of meromorphic solutions and non-existence of admissible transcendental solutions of some difference equations.Using Nevanlinna basic theory,we estimate the order and lower-order of meromorphic solutions when p(z) is polynomial.Some examples are also given to show that results are sharp.
出处 《数学杂志》 CSCD 北大核心 2012年第6期1075-1082,共8页 Journal of Mathematics
基金 江西省教育厅科技项目基金(GJJ11640)
关键词 差分方程 亚纯解 增长级 difference equation meromorphic solution order of growth
  • 相关文献

参考文献12

  • 1Hayman W K. Meromorphic functions [M]. Oxford: Clarendon Press, 1964.
  • 2Laine I. Nevanlinna theorey and complex differential equations [M]. Berlin: Walter de Gruyter, 1993.
  • 3Nevanlinna R. Analytic function [M]. Berlin, New York, Heidelberg: Springer-Verlag, 1970.
  • 4Yang Lo. Value distribution theory [M]. Berlin: Springer-Verlag; Beijing: Science Press, 1993.
  • 5Laine I, Rieppo J, Silvennoinen H. Remarks on the complex difference equations[J]. Comput. Meth- ods Funct. Theory, 2005, 5: 77-88.
  • 6Zheng Xiumin, Chen Zongxuan, Tu Jin. Growth of meromorphic solutions of some difference equa- tions[J]. Appl. Anal. Discrete Math, 2010, 4: 309-321.
  • 7郑秀敏,陈宗煊.某些q-差分方程亚纯解的增长性[J].数学年刊(A辑),2009,30(5):647-658. 被引量:1
  • 8Goldstein R. Some results on factorization of meromorphic functions [J]. J. London Math. Soc., 1971, 4(2): 357-364.
  • 9Goldstein R. On meromorphic results of certain functional equations [J]. Aequationes Math., 1978, 18: 112-157.
  • 10Rieppo J. On a class of complex functional equations [J]. Ann. Acad. Sci. Fenn. Math., 2007, 32: 151-170.

二级参考文献20

  • 1Chen Zongxuan(Dept of Math,Jiangxi Normal Univ)Nanchang.ON OSCILLATION THEOREMS FOR HIGHER ORDER DIFFERENTIAL EQUATIONS[J].数学研究,1994,27(1):56-59. 被引量:3
  • 2Hayman W. K., Meromorphic Functions [M], Oxford: Clarendon Press, 1964.
  • 3Laine I., Nevanlinna Theory and Complex Differential Equations [M], Berlin: Walter de Gruyter, 1993.
  • 4Nevanlinna R., Analytic Function [M], Berlin, New York, Heidelberg: Springer-Verlag, 1970.
  • 5Yang L., Value Distrbution Theory [M], Berlin: Springer-Verlag; Beijing: Science Press, 1993.
  • 6Ablowitz M. J., Halbrud R. G. and Herbst B., On the extension of the Painleve property to difference equations [J], Nonlinearity, 2000, 13:889-905.
  • 7Bergweiler W. and Langley J. K., Zeros of differences of meromorphic functions [J], Math. Proc. Cambridge Philos. Soc., 2007, 142:133-147.
  • 8Chen Z. X. and Shon K. H., On zeros and fixed points of differences of meromorphic functions [J], J. Math. Anal. Appl., 2008, 344(1):373-383.
  • 9Chiang Y. M. and Feng S. J., On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions [J], Trans. Amer. Math. Soc., 2009, 361:3767-3791.
  • 10Halburd R. G. and Korhonen R. J., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations [J], J. Math. Anal. Appl., 2006, 314:477- 487.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部