期刊文献+

Application ofArtificial Neural Networks in Instantaneous Peak Flow Estimation for Kharestan Watershed, Iran

应用人工神经网络估算伊朗Kharestan流域瞬时顶峰流量(英文)
原文传递
导出
摘要 Understanding the amount of instantaneous peak flow in watersheds is one of the most important factors that plays important role in planning and designing of projects related to water and river engineering. The purpose of this study is to compare the efficiency of artificial neural network and empirical methods for estimating instantaneous peak flow in Kharestan Watershed located northwest of Fars Province, Iran. For this purpose, 25 years of daily peak and instantaneous peak flow of Jamal Beig Hydrometric Station was considered. Then the estimation was done based on empirical methods including Fuller, Sangal and Fill-Steiner and artificial neural network and were compared based on RMSE and R2 . Results showed that estimation of artificial neural network is more accurate than empirical methods with RMSE = 13.710 and R2=0.942 which indicated the lower errors of artificial neural network method compared with empirical methods. 在水体工程及河流工程项目规划与设计中,瞬时顶峰流量是需要加以了解的最重要因素之一。本研究的目的是,在估算伊朗法尔斯省西北部Kharestan流域的瞬时顶峰流量时,对人工神经网络法与传统方法的功效进行对比。为此,采用了Jamal Beig水文站25年的日顶峰流量和瞬时顶峰流量数据。在Fuller、Sangal及Fill-Steiner经验方法以及人工神经网络方法的基础上进行了估算,并根据RMSE和R2进行了对比。结果显示,采用人工神经网络法的估算值比经验方法的更为精确,RMSE =13.710,R2= 0.942。这表明人工神经网络法比经验方法的误差更低。
出处 《Journal of Resources and Ecology》 CSCD 2012年第4期379-383,共5页 资源与生态学报(英文版)
关键词 instantaneous peak flow artificial neural network Kharestan Watershed 瞬时顶峰流量 人工神经网络 Kharestan流域
  • 相关文献

参考文献25

  • 1Ahmad S, S Simonovic. 2005. An artificial neural network model for generating hydrograph from hydro meteorological parameters. Journal of Hydrology, 315:236-251.
  • 2Brooks K N, P F Ffolliott, H M Gregersen, et al. 2003. Hydrology and the management of watersheds. Nwe York: Wiley-Blackwell.
  • 3Dawson C W, R L Wilby. 1999. A comparison of artificial neural networks used for river flow forecasting. Hydrology and Earth System Sciences, 3: 529-540.
  • 4Demirel M C, A Venancio, E Kahya. 2009. Flow forecast by SWAT model and ANN in Pracana basin, Portugal. Advances in Engineering Software, 40: 467-473.
  • 5Fill H D, A A Steiner. 2003. Estimating instantaneous peak flow from mean daily flow data. Journal of Hydrologic Engineering, 8(6): 365-369.
  • 6Fuller W E. 1914. Flood flow. Transaction of American Society of Civil Engineers, 77:564-617.
  • 7Hassanpour Kashani M, Montaseri M, Lotfollahi M A. 2007. Flood estimation at ungauged sites using a new nonlinear regression model and artificial neural networks. American-Eurasian Journal of Agricultural & Environmental Sciences, 2:784-791.
  • 8Imrie C E, S Dumcan, A Korre. 2000. River flow prediction using artificial neural networks: generalization beyond the calibration range. Journal of Hydrology, 233: 138-153.
  • 9Jain A, A Ivl Kumar. 2007. Hybrid neural network models for hydrologic time series forecasting. Applied Soft Computing, 7: 585-592.
  • 10Joorabchi A, Zhang H, M Blumenstein. 2007. Application of artificial neural networks in flow discharge prediction for the Fitzroy River. Journal of Coastal Research, 50: 287-291.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部