期刊文献+

基于项头表节点的Fp-growth改进算法

An improved FP-growth algorithm based on item head table node
下载PDF
导出
摘要 关联规则中的Fp-growth算法是不产生候选集的代表,将原算法FP-tree和项头表的Node_link字段删除,把Ln当作项头表。对任意频繁项ai,首先找到所有FP-tree节点的item-name与ai的项名相同的节点,对每个树节点寻找它的频繁模式,找到频繁项ai的所有频繁模式可节省1/5树的空间,把Ln当作项头表,省去项头表的空间,从而提高算法效率。实验结果表明,改进后的算法性能优于原算法性能。 In the association rule' s mining, FP-growth algorithm is one of the most high effective algorithm, and it doesn' t produce the candidate sets. It deletes the original FP-tree algorithm and the node_link field in the item header table, makes Ln as the item header table. For any frequent item ai, at first, it finds all the FP-tree nodes whose item-name has the same item name with ai, looking for the frequent pattern for every node, it can save 1/5 tree space when we found the frequent pattern for every frequent item, makes Ln as the item header table, saves head table space in order to improve the efficiency of the algorithm. The experimental results show that the improved algorithm is better than the original algorithm in performance.
作者 陈君 葛莉
出处 《信息技术》 2012年第12期34-35,40,共3页 Information Technology
基金 国家统计局课题项目(2011LY092) 渭南师范学院科研计划项目(12YKZ044)
关键词 数据挖掘 频繁项目集 关联规则 FP-TREE data mining frequent item sets association rules FP-tree
  • 相关文献

参考文献7

二级参考文献23

  • 1钟勇发,吕红兵.基于FP-growth的关联规则增量更新算法[J].计算机工程与应用,2004,40(26):174-175. 被引量:5
  • 2Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C]//Proc of the 1993 ACM SIGMOD Int' 1 Conf on Management of Data(SIGMOD' 93), 1993 : 207-216.
  • 3Agrawal R,Srikant R.Fast algorithms for mining association rules[C]// Proc of the 20th Intel'l Conf on Very Large Data Bases(VLDB' 94), 1994 : 487-499.
  • 4Han J.Mining frequent patterns without candidate generation[C]// Proceedings of the 2000 ACM SIGMOD Conference on Management of Data,Dallas,TX,2000:1-12.
  • 5Cheung D W.Maintenance of discovered association rules in large databases:An incremental updating technique[C]//Proceedings of the 12th International Conference on Data Engineering, 1996:106- 114.
  • 6Han J.W.,Kamber M..Data Mining:Concepts and Techniques.Beijing:Higher Education Press,2001.
  • 7Agrawal R.,ImielinSki T.,Swami A..Mining association rules between sets of items in large database.In:Proceedings of the ACM SIGMOD International Conference on Managementof Data,Washington,DC,1993,2:207-216.
  • 8Srikant A.R..Fast algorithms for mining association rules.In:Proceedings of the 20th International Conference Very Large Data Bases(VLDB’94).Santiago,Chile,1994,487-499.
  • 9Han J.W.,Pei J.,Yin Y..Mining partial periodicity using frequent pattern tree.Simon Fraser University:Technical Report TR-99-10,1999.
  • 10Cheung D.,Han J.W.,Ng V.,Wong V..Maintenance of discovered association rules in large databases:An incremental updating technique.In:Proceedings of the 12th International Conference on Data Engineering(ICDE),New Orleans,Louisiana.1996.106-114.

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部