期刊文献+

基于矩阵正态分布似然比测试的矩阵度量学习算法 被引量:1

Matrix metric learning algorithm based on likelihood ratio test with matrix normal distribution
原文传递
导出
摘要 本研究基于KISS(keep it simple and stupid)算法,利用似然比测试直接为矩阵模式定义度量,解决了现有大多数度量学习算法需要经过复杂优化过程的问题。通过在似然比测试中有目的地引入矩阵正态分布,该度量无需将矩阵模式通过向量化的方法变成向量模式,因而具有如下优点:(1)能够避免维数灾难;(2)比KISS更鲁棒;(3)无需计算大矩阵的逆和特征值分解,因此计算远快于KISS算法。最终的实验验证了该算法的优势。 Most metric learning algorithms involve tedious optimization procedure. In order to solve this problem, a metric for matrix data by using likelihood ratio test was defined based on the KISS algorithm ( keep it simple and stu- pid). By introducing the matrix normal distribution into the likelihood ratio test, the proposed metric does not need to transform matrix pattern into vector pattern. The results showed that this algorithm could avoid the curse of dimension, could be more robust than KISS, and would not need to compute the inverse and eigen-decomposition of high dimen- sional matrix, which was faster than KISS. Experiments verified the advantages of the proposed algorithm.
作者 钱强 陈松灿
出处 《山东大学学报(工学版)》 CAS 北大核心 2012年第6期37-42,共6页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61170151)
关键词 矩阵正态分布 矩阵度量 似然比测试 matrix normal distribution matrix metric likelihood ratio test
  • 相关文献

参考文献21

  • 1MITCHEL T M. Machine leaming[M]. Boston: McGraw Hill, 1999.
  • 2HOI S C, LIU W, LYU M R, et al. Learning distance metrics with contextual constraints for image retrieval [ C ]//Proceed- ings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Conference Publications, 2006:2072-2078.
  • 3罗辛,邰晓英,SHISHIBORI Masami,KITA Kenji.一种基于度量距离学习的图像检索方法[J].广西师范大学学报(自然科学版),2007,25(2):186-189. 被引量:5
  • 4GUILLAUMIN M, VERBEEK J, SCHMID C. Multiple instance metric learning from automatically labeled bags of faces [ C ]//Proceedings of European Conference on Computer Vision. Greece:Springer, 2010:634-647.
  • 5YU J, TIAN Q, AMORES J, et al. Toward robust distance metric analysis for similarity estimation[C]/Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Conference Publications, 2006 : 316-322.
  • 6杨帆,罗键,王华珍,彭彦卿,米红.基于核函数优化的相符预测器在故障检测中的应用[J].天津大学学报,2009,42(7):614-621. 被引量:1
  • 7DAVIS J V, KULIS B, JA1N P, et al. Information-theoretic metric learning[C]//Proceedings of International Conference on Machine Learning. Oregon : ACM Press, 2007 : 209-216.
  • 8WEINBERGER K Q, BLITZER J, SAUL L K. Distance metric learning for large margin nearest neighbor classificationl C]// Proceedings of Advances in Neural Information Processing Systems. Vancouver, Canada : MIT Press, 2006 207-244.
  • 9GOLDBERGER J, ROWELS S, HINTON G, et al. Neighbourhood components analysis [ C ]//Proceedings of Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2004: 395-401.
  • 10GLOBERSON A, S ROWELS. Metric learning by collapsing classes [C]//Proceedings of Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2006: 174-184.

二级参考文献7

  • 1张钊,吴爱国,裴燕玲.模糊控制的模糊推理分析[J].控制与决策,2005,20(8):905-908. 被引量:11
  • 2GOLDBERGER J,ROWEIS S,HINTON G,et al.Neighborhood components analysis[C]//Advances in Neural Information Processing Systems 17.Cambridge,MA:MIT Press,2005:513-520.
  • 3WEINBERGER K Q,BLITZER J,SAUL L K.Distance metric learning for large margin nearest neighbor classification[C]//Advances in Neural Information Processing Systems 18.Cambridge,MA:MIT Press,2006,1473-1480.
  • 4MULLER H,PUN T,SQUIRE D.Learning from user behavior in image retrieval:application of market basket analysis[J].International Journal of Computer Vision,2004,56(1/2):65-77.
  • 5ISHIKAWA Y,SUBRAMANYA R,FALOUTSOS C.MindReader:querying databases through multiple examples[C]//Proceedings of 24th International Conference on Very Large Data Bases.San Francisco,CA:Morgan Kaufmann Publisher,1998:218-227.
  • 6GUO Guo-dong,JAIN A K,MA Wei-ying,et al.Learning similarity measure for natural image retrieval with relevance feedback[J].IEEE Transactions on Neural Networks,2002,13(4):811-820.
  • 7王珏,石纯一.机器学习研究[J].广西师范大学学报(自然科学版),2003,21(2):1-15. 被引量:77

共引文献4

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部