期刊文献+

头部形状对超声速飞行器力学性能影响分析 被引量:4

Affect of head shape on flight dynamics of supersonic vehicles
原文传递
导出
摘要 飞行器超声速飞行时,头部会产生强烈激波及激波阻力,对飞行器力学性能产生较大影响,阻碍飞行器提高飞行速度和增大飞行距离,产生额外能源消耗。系统研究头部形状对超声速飞行器力学性能的影响,采用5种不同的头部形状研究了超声速飞行器在Ma=2.0和Ma=4.0飞行时的力学性能,以及激波阻力和特性。试验结果表明:通过头部形状优化设计,可显著降低激波阻力;弹头长宽比是影响飞行器力学性能最显著的因素,母线形状次之。通过风洞纹影系统分析了头部形状对激波角及激波阻力的影响,结果表明,激波角越小,激波阻力越小。 For supersonic vehicles,strong shock wave and shock drag would be induced in the head of vehicles which worked on the flight dynamics and hindered maximum voyage and cruising speed.To improve the mechanical properties of supersonic vehicles,we analyzed the influence of five different heads on characteristics of shock wave at Ma=2.0 and Ma=4.0 through FD06 wind tunnel.Result shows that: maximum drag reduction is achieved through optimization of heads.Length to width ratio of vehicle head is the most important factor on shock wave drag;secondly,shape of generatrix will also affect wave drag.Shock wave angles of five different heads were tested through wind tunnel schlieren system and result indicates that: wave drag reduction will decrease along with reduction of shock wave angle.
出处 《飞行力学》 CSCD 北大核心 2012年第6期537-540,共4页 Flight Dynamics
基金 国家自然科学基金创新群体基金资助(51021064) 国家自然科学基金青年科学基金资助(51105223)
关键词 飞行力学 形状优化 减阻 超声速飞行器 风洞试验 flight dynamics shape optimization drag reduction supersonic vehicle wind experiment
  • 相关文献

参考文献10

  • 1侯盼盼,张彬乾,陈真利.鸭式布局飞机超音速减阻设计方法研究[J].机械科学与技术,2009,28(6):760-763. 被引量:2
  • 2李向群,安亦然,王世安,程暮林,张锡金,孙惠中.高速飞机的全机气动力数值分析[J].水动力学研究与进展(A辑),2004,19(z1):838-848. 被引量:13
  • 3Vinayak Kulkarni,Hegde G M,Jagadeesh G. Aerodynamic drag reduction by heat addition into the shock layer for a large angle blunt cone in hypersonic flow [ J ]. Physics of Fluids , 2008 , 20 (4) :69-76.
  • 4Viren M, Saravanan S, Reddy K P J. Shock tunnel study of spiked aerodynamic bodies flying at hypersonic Math number [ J ]. Shock Waves ,2007,12( 3 ) : 197-206.
  • 5Venukumar B, Jagadeesh G, Reddy K P J. Counterflow drag reduction by supersonic jet for a blunt body in hyper- sonic flow [ J ]. Physics of Fluids,2006,18 ( 7 ) :234-241.
  • 6Satheesh K, Jagadeesh G. Effect of concentrated energy deposition on the aerodynamic drag of a blunt body in hy- personic flow [ J ]. Physics of Fluids, 2007, 19 ( 2 ) : 156-162.
  • 7Reding J P, Jecmen D M. Effects of external burning on spike induced separated flows [ J ]. Journal of Spacers Rockets, 1983,20 ( 9 ) : 132-137.
  • 8Zonglin Jiang Yunfeng Liu Guilai Han Wei Zhao Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China.Experimental demonstration of a new concept of drag reduction and thermal protection for hypersonic vehicles[J].Acta Mechanica Sinica,2009,25(3):417-419. 被引量:18
  • 9Rogers R C, Capriotti D P, Guy R W. Experimental super- sonic combustion research at NASA langley [ R ]. AIAA- 98-2506,1998.
  • 10Zaman K B, Reeder M F, Samimy M. Control of an axisym- metric jet using vortex generators I J ]. Physics of Fluids, 1994,6(2) :778-793.

二级参考文献21

  • 1Hoemer S. Fluid Dynamic Drag[ M]. New Jersey Hoemer Fluid Dynamics, 1965
  • 2Chen Z L, Zhang B Q. A CFD Method of Reducing the Supersonic Drag Basing on the Area Rule Concept[ R]. AIAA 2006- 3334, 2006
  • 3Vojin N, Jumper E J. Zero-lift wave drag calculation using supersonic area role and its modification[ A]. 42nd AIAA Aerospace Sdenees Meeting and Exhibit[ C], Reno. Nevada, 2004
  • 4Biblarz O, Pomerantz B, Lindsey G H. Transonic Missile Drag Area-Rule and Afterbody-Role Verification with CFD [ R ]. AIAA 98-0527, 1998
  • 5Pittswilliam C. Reduction of Wave Drag of Wing Body Combinations at Supersonic Speeds through Body Distortions[ R]. NACA-RM-A56B10
  • 6Hansen J. The design revolution in supersonic aerodynamics: the NACA's Richard T. whitcomb and the genesis of the area rule [ A]. 38th AIAA Aerospace Sciences Meeting & Exhibit[ C], Reno, Nevada, 2000
  • 7Lovell D A. European Research to Reduce Drag for Supersonic Transport Aircraft[ R]. AIAA-99-3100, 1999
  • 8Ashley H, Landahl M. Aerodynamics of Wings and Bodies [ M]. Dover Publications, 1965
  • 9Liepman H W, Roshko A. Elements of Gasdynamics [ M ]. Dover Publications, 1957
  • 10Bushnell, D.M.: Shock wave drag reduction. Annu. Rev. Fluid. Mech. 36, 81-96 (2004).

共引文献30

同被引文献41

  • 1陈兵,徐旭,王元光,蔡国飙.定几何混压式轴对称超声速进气道设计及性能计算[J].航空动力学报,2005,20(3):373-379. 被引量:12
  • 2孙丰诚,孙健国.基于序列二次规划算法的发动机性能寻优控制[J].航空动力学报,2005,20(5):862-867. 被引量:21
  • 3张涛,安玮,周一宇,李骏.基于推力加速度模板的主动段弹道跟踪方法[J].宇航学报,2006,27(3):385-389. 被引量:18
  • 4Valceres V R Silva, Wael Khatib, Peter J Fleming. Per- formance Optimization of Gas Turbine Engine[J]. Engi- neering Applications of Artificial Intelligence, 2005, 18 (5): 575- 583.
  • 5Tagashira T, Sugiyama N. A Performance Optimization Control of Variable Cycle Engines [R]. AIAA 2003- 4984.
  • 6Dodd N, Martin J. Using Neural Networks to Optimize Gas Turbine Aero Engines [J]. Computing and Control Engineering Journal, 1997, 8(3): 129-135.
  • 7Vinayak Kulkami, Hegde G M, Jagadeesh G. Aerody- namic Drag Reduction by Heat Addition into the Shock Layer for a Large Angle Blunt Cone in Hypersonic Flow [J]. Physics of Fluids, 2008, 20(4): 69-76.
  • 8Aaron S Boksenbom, Melvin S Federal. Analysis of Pa- rameters for Thrust Control of a Turbojet Engine Equipped with Air-Inlet Throttle and Variable-Area Ex- haust Nozzle[ R]. NASA-EBB27.
  • 9Gary L Cole, George H Neiner. Coupled Supersonic In- let- Engine Control Using Overboard Bypass Doorstep and Engine Speed to Control Normal Shock Position [ R]. NASA-TN-D-6019.
  • 10Lee S H. Characteristics of Dual Transverse Injection in Scramjet Combustor: Part 2 Combustion [J]. Journal of Propulsion and Power, 2006, 22(5): 1020-1026.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部