期刊文献+

基于稀疏支撑集先验的压缩感知图像序列重建算法 被引量:3

Compressed Sensing Image Sequence Reconstruction Algorithm Based on Sparse Support Prior
下载PDF
导出
摘要 针对现有压缩感知图像序列重建算法重建精度不高、模型参数设置较多的问题,提出了一种结合稀疏支撑集先验和残差补偿的算法。在已知前一帧图像重建结果的基础上,通过求解1个最小化加权l1范数问题得到当前帧图像的初始估计。通过对估计残差进行压缩感知重建并对初始估计加以补偿,得到当前帧图像的最终重建结果。与其他同类算法相比,该算法减少了阈值参数的设置。实验结果表明,在相同的测量值数目下,该算法重建图像的相对误差、峰值信噪比和结构相似度指标均优于同类比较算法。 Aiming at the problems of low accuracy and more model parameters of traditional compressed sensing image sequence reconstruction algorithms, a novel algorithm combining sparse support prior and residual compensation is proposed. The initial estimation of the current image is obtained by solving a weighted lI norm minimization problem based on knowing the reconstruction of the previous image. The final estimation of the current image is generated by the compressed sensing reconstruction of the estimation error and the compensation of the original estimation. Compared with other similar algorithms, the proposed algorithm reduces the number of threshold parameters. Experimental results show that the proposed algorithm is superior to other similar algorithms in terms of relative error, peak signal to noise radio and structural similarity of reconstructed images with same number of measured values.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2012年第6期973-978,共6页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(61071146 61101194 61101198) 江苏省自然科学基金(BK2011701)
关键词 稀疏支撑集 压缩感知 图像序列 残差补偿 sparse support compressed sensing image sequences residual compensation
  • 相关文献

参考文献15

  • 1Donoho D. Compressed sensing[ J]. IEEE Trans on Information Theory, 2006,52 (4) : 1289-1306.
  • 2Candes E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans on Information Theory, 2006,52 ( 2 ) :489- 509.
  • 3孙林慧,杨震,叶蕾.基于自适应多尺度压缩感知的语音压缩与重构[J].电子学报,2011,39(1):40-45. 被引量:18
  • 4梁瑞宇,邹采荣,赵力,奚吉,张学武.语音压缩感知及其重构算法[J].东南大学学报(自然科学版),2011,41(1):1-5. 被引量:8
  • 5Selin A. Compressed sensing framework for EEG compression [ A ]. Proceedings of IEEE/SP 14th Workshop on Statistical Signal Processing [ C ]. Madison, USA : IEEE ,2007 : 181-184.
  • 6Lustig M, Donoho D, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MR imaging [ J ]. Magnetic Resonance in Medicine, 2007, 58(6) :1182-1195.
  • 7Baraniuk R, Steeghs P. Compressive radar imaging [ A ]. Proceedings of IEEE Radar Conference [ C ]. Boston, USA: IEEE,2007 : 128-133.
  • 8刘记红,徐少坤,高勋章,黎湘.基于随机卷积的压缩感知雷达成像[J].系统工程与电子技术,2011,33(7):1485-1490. 被引量:11
  • 9贺亚鹏,朱晓华,庄珊娜,王克让.压缩感知雷达波形优化设计[J].南京理工大学学报,2011,35(4):519-524. 被引量:5
  • 10Wei Lu, Vaswani N. Modified compressive sensing for real-time dynamic MR imaging [ A ]. Proceedings of IEEE International Conference on Image Processing [ C ]. Cairo, Egypt : IEEE, 2009 : 3045-3048.

二级参考文献43

  • 1Candes E J, Tao T. Near optimal signal recovery from random projections : universal encoding strategies [ J ]. IEEE Transactions on Information Theory, 2006, 52 ( 12 ) :5406 - 5425.
  • 2Plumbley M, Abdallah S, Blumensath T, et al. Sparse representations of polyphonic music [ J ]. Signal Process- ing, 2006,86(3): 417-431.
  • 3Plumbley M, Abdallah S, Blumensath T, et al. Musical audio analysis using sparse representations [ C ]// COMPSTAT 2006 Proceedings in Computational Statis- tics. Heidelberg, Germany, 2006 : 104 - 117.
  • 4Davies M, Daudet L. Sparse audio representations using the MCLT [ J ]. Signal Processing, 2006, 86 ( 3 ) : 457 - 470.
  • 5Peyre G. Best basis compressed sensing [ J ]. IEEE Transactions on Signal Processing, 2010,58 ( 5 ) : 2613 - 2622.
  • 6Baraniuk R G. Compressive sensing [ J ]. IEEE Signal Processing Magazine, 2007, 24(4) : 118 -121.
  • 7Figueiredo M A T, Nowak R D, Wright S J, et al. Gradient projection for sparse reconstruction: applica- tion to compressed sensing and other inverse problems [J ]. Selected Topics in Signal Processing, 2007,1 (4) :586 - 597.
  • 8Cand-s E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Information Theory,2006,52(2) :489-509.
  • 9Cand-s E J, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements [ J ]. Communications on Pure and Applied Mathematics, 2006,59 ( 8 ) : 1207-1223.
  • 10Candbs E J. Compressive sampling[ A]. Proceedings of ICM2006 [ C ]. Madrid, Spain : Association International Congress of Mathematicians, 2006 : 1433-1452.

共引文献37

同被引文献16

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部