期刊文献+

应用案例推理技术的快速认知引擎 被引量:2

Fast cognitive engine using case-based reasoning
下载PDF
导出
摘要 认知引擎必须根据外界无线环境的变化和用户需求,快速自适应调整无线电参数。本文选取一定比例粒子群个体按选定匹配案例的参数配置进行初始化,其余个体随机初始化,这样使粒子群优化算法的粒子在搜索初期就处于靠近最优解的解空间里,同时保持一定的种群多样性,得到一种基于案例推理粒子群优化算法;并由此算法以最大化数据速率、最小化发射功率及最小化误比特率为目标来优化无线电传输参数,得到一种比现有算法收敛速率快和寻优能力强的认知引擎。多载波系统的仿真结果表明了本算法的有效性。 Cognitive engine must adapt the radio parameters quickly according to the changing environment and user needs. A certain percentage of the particle swarm individuals are initialized based on the parameters of the selected matc- hing cases, and the remaining individuals are randomly initialized, which can make particles of the particle swarm optimiza- tion algorithm near the optimal solution in the early search stage and maintain a certain degree of population diversity. A case-based reasoning particle swarm optimization algorithm is got, and the proposed algorithm is used to adjust and optimize the radio parameters to maximize the date throughput,minimize the transmit power and BER. The proposed algorithm is bet- ter than current algorithms in both the convergence rate and the optimization capability. Simulation results of multi-carrier system show the effectiveness of the algorithm.
出处 《信号处理》 CSCD 北大核心 2012年第12期1700-1705,共6页 Journal of Signal Processing
基金 "十二五"国防预研项目(No.41001010401)
关键词 认知引擎 案例推理 粒子群优化算法 无线电参数 Cognitive engine case-based reasoning particle swarm optimization algorithm radio parameter
  • 相关文献

参考文献11

  • 1Kolodner J L. Leake D. “A tutorial introduction to case-based reasoning,” in Case-Based Reasoning: Experi-ences ,Lessons and Future Directions [ M ]. Cambridge,MA:MIT Press, 1996, 31-65.
  • 2He A. Kyung K B. Newman T R. A Survey of ArtificialIntelligence for Cognitive Radios [ J ]. IEEE Transactionson vehicular Technology, 2010,59(4) : 1578-1592.
  • 3Newman T R. Barker B R. Wyglinski A M. Agah A.Cognitive engine implementation for wireless multicarriertransceivers [ J ] . Wireless Communications and MobileComputing, 2007, 7(9) : 1129-1142.
  • 4Rieser C J. Rondeau T W, Bostian C W. Cognitive ra-dio testbed : further details and testing of a distributedgenetic algorithm based cognitive engine for programma-ble radios [ C ] . Military Communications Conference,2004,1437-1443.
  • 5Zhao Youping. Joseph G. Lizdabel M. et al. Develop-ment of radio environment map enabled case and knowl-edge-based learning algorithms for IEEE 802. 22 WRANCognitive Engines [ C ]. Cognitive Radio Oriented Wire-less Networks and Communications. 2007, 44-49.
  • 6He A. Gaeddert J. Bae K. Newman T R. J. H. Reed. L.Morales. C. Park. Development of a case-based reasoningcognitive engine for IEEE 802. 22 WRAN applications[J ] . Mobile Computing and Communications Review,2009,13(2) ; 37-48.
  • 7Rondeau T W. Application of artifical intelligence to wire-less communications [ D ]. Virginia Polytechnic Instituteand State University, 2007.
  • 8Newman T R. Ragban R. Wyglinski A M. et al. Popula-tion adaptation for genetic algorithm-based cognitive radios[J ] . Mobile Networks and Applications,2008,13( 15 );442-451.
  • 9Kennedy J. Eberhart R C. Particle swarm optimizer[ C ].IEEE International Conference on Neural Networks, 1995,1942-1948.
  • 10Zhijin Zhao. Shiyu Xu. Shilian Zheng. Junna Shang. Cog-nitive radio adaptation using particle swarm optimization[J]. Wireless Communications and Mobile Computing,2009, 9(7) :875-881.

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部