期刊文献+

多元线性模型广义岭型预测的最优性判别 被引量:1

The optimality criterion of generalized ridge prediction in the multivariate linear model
下载PDF
导出
摘要 对多元线性模型有偏估计的预测问题,利用矩阵不等式的性质,提出判别最优线性无偏预测、岭型预测和广义岭型预测最优性的一个Ri(.)准则,找到了广义岭型预测在该准则下,比最优线性无偏预测优越的充要条件,及在矩阵迹意义下优于最优线性无偏预测、岭型预测的充分条件,为多元线性模型两类预测量的最优性判别问题提供了一种新诊断方法。 Aiming at the prediction issue of the biased estimation of the multivariate linear model, The rule R^(-) is presented to distinguish the superiority among the best linear unbiased prediction, the ridge prediction and the gen- eralized ridge prediction. And it obtain an necessary and sufficient condition of the superiority between the general- ized ridge prediction and the best linear unbiased prediction under the rule R1 (·) and the two sufficient condition of the generalized ridge prediction superior to the ridge prediction and the best linear unbiased prediction under the rule based on the nature of the matrix trace. It provides a new diagnosis method for the distinguishing problem of the two kinds of predictions of the multivariate linear model.
出处 《桂林电子科技大学学报》 2012年第6期499-503,共5页 Journal of Guilin University of Electronic Technology
关键词 多元线性模型 最优线性无偏预测 岭型预测 广义岭型预测 multivariate linear model best linear unbiased prediction ridge prediction generalized ridge prediction
  • 相关文献

参考文献4

二级参考文献11

  • 1[1]Pereira C A B, Rodrigues J. Robust Linear Prediction in Finite Populations. International Statistical Review, 1983, 51:293-300
  • 2[2]Bolfarine H, Pereira C A B, Rodrigues J. Robust Linear Prediction in Finite Populations-A Bayesian Perspective. Sankhya-(Series B), 1987, 49:23-35
  • 3[3]Bolfarine H, Rodrigues J. On the Simple Projection Predictor in Finite Populations. Aust. Jour.Statist., 1988, 30:338-341
  • 4[4]Bolfarine H, Zacks S. Bayes and Minimax Prediction in Finite Populations. Jour. Statistical Planning and Inference, 1991, 28:139-151
  • 5[5]Bolfarine H, Zacks S, Elian S N, Rodrigues J. Optimal Prediction of the Finite Population Regression Coefficient. Sankhya- (Series B), 1994, 56:1-10
  • 6[6]Rodrigues J, Bolfarine H, Rogakto A. A General Theory of Prediction in Finite Populations. International Statistical Review, 1985, 53:239-254
  • 7Bibbyj Toutenburgh. Prediction and Improved estimation in linear models [M] New York: Wiley, 1977.
  • 8C R Rao , H Toutenburg. Prediction and improved estimation in linear models [M]. New York: Springer-Verlag, 1995.
  • 9Rao Toutenburg. Linear models least square and alternatives [M]. New York: Sprlnger-Verlag, 1995.
  • 10杨婷 杨虎 张洪阳.基于岭估计的最优预测与经典预测的最优性判别[J].重庆大学学报,:56-58.

共引文献91

同被引文献6

  • 1杨婷 杨虎 张洪阳 重庆.基于岭估计的最优预测与经典预测的最优性判别.重庆大学学报,2002,(6):56-58.
  • 2王松桂.矩阵不等式[M].北京:科学出版社.2006:33-36.
  • 3Bibby J ,Toutenburg H. Prediction and Improved Estimation in Linear Models[J]. New York: Wiley, 1977.
  • 4Rao C R,Toutenburg H. Prediction and Improved Estimation in Linear Models[M]. New York:Springer-Verlag, 1995.
  • 5黄介武.多元线性模型中两类预测的最优性判别[J].经济数学,2011,28(1):21-23. 被引量:8
  • 6喻胜华,何灿芝.任意秩多元线性模型中的最优预测[J].应用数学学报,2001,24(2):227-235. 被引量:35

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部