期刊文献+

Nonabelian Jacobian of smooth projective surfaces-a survey 被引量:2

Nonabelian Jacobian of smooth projective surfaces-a survey
原文传递
导出
摘要 The nonabelian Jacobian J(X;L,d) of a smooth projective surface X is inspired by the classical theory of Jacobian of curves.It is built as a natural scheme interpolating between the Hilbert scheme X [d] of subschemes of length d of X and the stack M X(2,L,d) of torsion free sheaves of rank 2 on X having the determinant OX(L) and the second Chern class(= number) d.It relates to such influential ideas as variations of Hodge structures,period maps,nonabelian Hodge theory,Homological mirror symmetry,perverse sheaves,geometric Langlands program.These relations manifest themselves by the appearance of the following structures on J(X;L,d):1) a sheaf of reductive Lie algebras;2)(singular) Fano toric varieties whose hyperplane sections are(singular) Calabi-Yau varieties;3) trivalent graphs.This is an expository paper giving an account of most of the main properties of J(X;L,d) uncovered in Reider 2006 and ArXiv:1103.4794v1. The nonabelian Jacobian J(X; L, d) of a smooth projective surface X is inspired by the classical theory of Jacobian of curves. It is built as a natural scheme interpolating between the Hilbert scheme X[d] of subschemes of length d of X and the stack Mx(2, L, d) of torsion free sheaves of rank 2 on X having the determinant Ox(L) and the second Chern class (= number) d. It relates to such influential ideas as variations of Hodge structures, period maps, nonabelian Hodge theory, Homological mirror symmetry, perverse sheaves, geometric Langlands program. These relations manifest themselves by the appearance of the following structures on J(X;L,d): 1) a sheaf of reductive Lie algebras; 2) (singular) Fano toric varieties whose hyperplane sections are (singular) Calabi-Yau varieties; 3) trivalent graphs. This is an expository paper giving an account of most of the main properties of J(X; L, d) uncovered in Reider 2006 and ArXiv:1103.4794v1.
作者 REIDER Igor
出处 《Science China Mathematics》 SCIE 2013年第1期1-42,共42页 中国科学:数学(英文版)
关键词 JACOBIAN Hilbert scheme vector bundle 雅可比矩阵 投影 平滑 非交换 Langlands 经典理论 希尔伯特 镜像对称
  • 相关文献

参考文献24

  • 1Aspinwall P S. String theory and duality. Doc Math, 1998, 2:229-238.
  • 2Beilinson A, Bernstein J, Deligne P. Faisceaux Pervers. Asterisque, vol. 100, 1982.
  • 3Bott R, Cern S S. Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections. Acta mathematica, 1965, 114:71 112.
  • 4Drinfeld V G. Two-dimensional l-adic representations of the fundamental group of a curve over finite field and auto- morphie forms on GL(2). Amer J Math, 1983, 105:85-114.
  • 5Frenkel E. Lectures on the Langlands Program and conformal field theory. Arxiv:hep-th/0512172.
  • 6Ginzburg V. Perverse sheaves on a loop group and Langlands duality. Arxiv: alg-geom/9511007.
  • 7Gottsche L. Hilbert Schemes of Zero-dimensional Subschemes of Smooth Varieties. Lecture Notes in Mathematics, vol. 1572. Berlin: Springer-Verlag, 1994.
  • 8Gottsche L, Soergel W. Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces. Math Ann, 1993, 296:235-245.
  • 9Griffiths P, editor. Topics in Transcendental Algebraic Geometry. Annals of Mathematical Studies, vol. 106. Princeton- N J: Princeton University Press, 1984.
  • 10Griffiths P, Harris J. Principles of Algebraic Geometry. New York: Wiley, 1978.

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部