期刊文献+

Shrinking target problems for beta-dynamical system 被引量:3

Shrinking target problems for beta-dynamical system
原文传递
导出
摘要 For any β 〉 1, let ([0, 1],Tβ) be the beta dynamical system. For a positive function ψ : N → R+ and a real number x0 E [0, 1], we define D(Tβ, ψ, xo) the set of ψ-well approximable points by xo as {x C [0, 1] : ]Tβ^nx - x0| (ψ(n) for infinitely many n ∈ N}.In this note, by proving a structure lemma that any ball B(x, r) contains a regular cylinder of comparable length with r, we determine the Hausdorff dimension of the set D(Tβ, ψb, x0) completely for any β 〉 1 and any positive function ψ. For any β>1,let([0,1],Tβ) be the beta dynamical system.For a positive function ψ:N→R+ and a real number x0 ∈[0,1],we define D(Tβ,ψ,x0) the set of ψ-well approximable points by x0as {x∈[0,1]:|Tβnx-x0|<ψ(n) for infinitely many n∈N}.In this note,by proving a structure lemma that any ball B(x,r) contains a regular cylinder of comparable length with r,we determine the Hausdorff dimension of the set D(Tβ,ψ,x0) completely for any β>1 and any positive function ψ.
出处 《Science China Mathematics》 SCIE 2013年第1期91-104,共14页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.10901066 and 51149008) Hunan Natural Science Foundation(Grant No.09JJ3001)
关键词 β -dynamical system shrinking target problems Hausdorff dimension 动力系统 Hausdorff维数 收缩 实数 逼近 引理 集合
  • 相关文献

参考文献25

  • 1Barreira L, Saussol B. Hausdorff dimension of measures via Poincare recurrence. Cornmun Math Phys, 2001, 219: 443-463.
  • 2Besicovitch A S. Sets of fractional dimension (IV): On rational approximation to real numbers. J London Math Soc, 1934, 9:126-131.
  • 3Boshernitzan M. Quantitative recurrence results. Invent Math, 1993, 113:617-631.
  • 4Bugeaud Y. A note on inhomogeneous Diophantine approximation. Glasgow Math J, 2003, 45:105-110.
  • 5Chernov N, Kleinbock D. Dynamical Borel-Cantelli lemmma for Gibbs measures. Israel J Math, 2001, 122:1-27.
  • 6Falconer K J. Fractal Geometry, Mathematical Foundations and Application. New York: Wiley, 1990.
  • 7Fan A H, Wang B W. On the lengths of basic intervals in beta expansions. Nonlinearity, 2012, 25:1329-1343.
  • 8Farm D, Persson T, Schmeling J. Dimenion of countable intersections of some sets arising in expansions in non-integer bases. Fundam Math, 2010, 209:157-176.
  • 9Fayad B. Mixing in the absence of the shrinking target property. Bull London Math Soc, 2006, 38:829-838.
  • 10Fernandez J L, MeliAn M V, Pestana D. Quantitative recurrence properties of expanding maps. ArXiv:math/0703222v1, 2007.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部