期刊文献+

模糊树模型对有限样本集的逼近 被引量:2

Approximate Limit Sampling Data Using Fuzzy Tree Model
下载PDF
导出
摘要 对含高度非线性的复杂系统的辨识与建模提出了一种二叉线性模糊树方法 .证明了对n维空间中任一闭集上的有限样本集或连续函数 ,总存在模糊树模型以任一精度逼近之 .仿真结果表明 ,与已有的其它方法比较 ,模糊树模型不仅具有计算量小 ,精度高 ,对于输入空间维数不敏感等优点 ,同时它的逼近误差是单调下降的 .模糊树模型在一定程度上模拟了对复杂问题进行分层、分段简化决策的思维过程 . A linear binary fuzzy tree structure approach, i.e. Fuzzy Tree model, is proposed for complex nonlinear system modeling. In comparison with some other modeling approaches, such as ANFIS and Neural Network model, the proposed model is of less computation, higher accuracy, especially insensitivity to high dimension. It is proved that for any square integrated continuous function, there always exists a Fuzzy Tree model to approximate it arbitrarily. Fuzzy Tree model simulates the layered decision making and piece wise linearized processing procedure for solving complex problems. A numerical solution was given to show the approach.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2000年第2期231-233,共3页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目 !(69874002)
关键词 系统辨识 模糊树模型 子空间 加权逼近 systems identification model building fuzzy models
  • 相关文献

参考文献3

  • 1[1]Takagi T, Sugeno M. Fuzzy identification of systems and applications to modelling and control[J]. IEEE Trans on System Man and Cyb, 1985,1(1): 116~132.
  • 2[2]Jang J S R. ANFIS: adaptive-network-based fuzzy inference system[J]. IEEE Trans on System Man and Cyb, 1993, 23(3): 665~685.
  • 3[3]Gelfand S B, Ravishankar C S. A tree-structured piecewise linear adaptive filter[J]. IEEE Trans on Info Theory, 1993, 39(6): 1907~1922.

同被引文献11

  • 1WANG J, RAD A B, CHAN P T. Indirect adaptive fuzzy sliding mode control-part Ⅰ: fuzzy switching[J]. Fuzzy Sets and Systems, 2001, 122(1): 21 - 30.
  • 2HO H F, WONG Y K, RAD A B. Adaptive fuzzy sliding mode control design: Lyapunov approach[C] //Proceedings of the 5th Asian Control Conference. Melbourne, Australia: IEEE, 2004:1502 - 1507.
  • 3WANG T, TONG S C. Output feedback control of nonlinear systems using adaptive fuzzy sliding mode controller[C] //Proceedings of the 4th International Conference on Machine Learning and Cybernetics. Guangzhou: IEEE, 2005:1345 - 1350.
  • 4WANG T, TONG S C. Adaptive fuzzy output feedback control for SISO nonlinear systems[C] //IEEE Proceedings of the 3rd International Conference on Machine Learning and Cybernetics. Shanghai: IEEE, 2004:833 - 838.
  • 5HO H F, WONG Y K, RAD A B. Adaptive fuzzy sliding mode control for SISO nonlinear systems[C] //The 12th IEEE International Conference on Fuzzy Systems. Saint Louis, Missouri, USA: IEEE, 2003: 1344- 1349.
  • 6YING H. General SISO Takagi-Sugeno fuzzy system with linear rule consequent are approximators[J]. IEEE Transactions on Fuzzy Systems, 1998, 6(4): 582 - 587.
  • 7MAO J Q, ZHANG J G, YUE Y F, et al. Adaptive tree-structured -based fuzzy inference systems[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(1): 1 - 12.
  • 8GE S S, HANG C C, LEE T H. Stable Adaptive Neural Network Control[M]. Norwell, MA: Kluwer, 2001.
  • 9丁海山,毛剑琴,林岩.基于模糊树模型的间接自适应模糊控制[J].自动化学报,2008,34(6):676-683. 被引量:7
  • 10张建刚,毛剑琴,夏天,魏可惠.模糊树模型及其在复杂系统辨识中的应用[J].自动化学报,2000,26(3):378-381. 被引量:17

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部