期刊文献+

可压Navier-Stokes方程真空状态的动力学行为 被引量:2

Dynamics of vacuum states for the compressible Navier-Stokes equations
原文传递
导出
摘要 本文主要考虑了一维可压Navier-Stokes方程真空状态的动力学行为.对于任意的熵弱解,如果初始状态不存在真空,我们证明了密度函数关于时间和空间变量是连续的且对于任意时间它是处处为正的.同时,我们还得到了含有间断连接的真空状态的整体熵弱解的存在性,结果显示其真空区域以代数速率被压缩,并在有限时间内消失. The dynamics of vacuum states for 1D compressible Navier-Stokes equations are considered. For any global entropy weak solution, we show that the flow density is continuous on both space and time, and is positive everywhere for all the time, if no vacuum state exists initially (i.e., non-formation of vacuum states happens). Furthermore, we prove that there is a global weak solution which contains one piece of discontinuous finite vacuum for some time period, meanwhile the vacuum is shown to be compressed at an algebraic rate and then vanishes within finite time.
出处 《中国科学:数学》 CSCD 北大核心 2012年第12期1185-1203,共19页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11071195和11171228)资助项目
关键词 可压Navier—Stokes方程 熵弱解 真空状态的动力学行为 compressible Navier-Stokes, entropy weak solutions, dynamics of vacuum states
  • 相关文献

二级参考文献22

  • 1Li H L, Li J, Xin Z P. Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations. Comm Math Phys, 2008, 281: 401-444.
  • 2Bresch D, Desjardins B. Some diffusive capillary models of Korteweg type. C R Math Acad Sci Paris Section Mdcanique, 2004, 332(11): 881-886.
  • 3Fang D Y, Zhang T. Compressible Navier-Stokes equations with vacuum state in the case of general pressure law. Math Methods Appl Sci, 2006, 29: 1081-1106.
  • 4Jiang S. Global smooth solutions of the equations of a viscous, heat-conducting one- dimensional gas with density-dependent viscosity. Math Nachr, 1998,190: 169-183.
  • 5Jiang S, Xin Z P, Zhang P. Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. Meth Appl Anal, 2005, 12(3): 239-252.
  • 6Mellet A, Vasseur A. Existence and uniqueness of global strong solutions for one- dimensional compressible Navier-Stokes Equations. SIAM J Math Anal, 2008, 39(4): 1344- 1365.
  • 7Kazhikhov A V, Shelukhin V V. Unique global solution with respect to time of initial- boundary value problems for one-dimensional equations of a viscous gas. J Appl Math Me ch, 1977, 41: 273-282. Translated from Prikl Mat Meh 1977, 41: 282-291.
  • 8Hoff D, Serre D. The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow. SIAM J Appl Math, 1991, 51: 887-898.
  • 9Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kvoto Univ, 1980, 20(1): 67-104.
  • 10Lions P L. Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models. London: Oxford Science Publication, 1998.

共引文献10

同被引文献1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部