期刊文献+

剩余有限minimax可解群的几乎正则自同构 被引量:1

On almost regular automorphisms of residually finite minimax soluble groups
原文传递
导出
摘要 设G是一个剩余有限的minimax可解群,α是G的几乎正则自同构,则G/[G,α]是有限群,并且(1)当αp=1时,G有一个指数有限的幂零群其幂零类不超过h(p),其中h(p)是只与素数p有关的函数.(2)当α2=1时,G有一个指数有限的Abel特征子群且[G,α]′是有限群. Let G be a residually finite minimax soluble group and a be an almost regular automorphism of G. Then G/[G, α] is a finite group. If αp=1, then G contains a nilpotent subgroup of finite index and of nilpotent class at most h(p), where h(p) is a function depending only on p. If α2 = 1, then G contains an abelian characteristic subgroup of finite index and [G, α]' is a finite group.
作者 刘合国 徐涛
出处 《中国科学:数学》 CSCD 北大核心 2012年第12期1237-1250,共14页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10971054) 湖北省高层次人才工程基金(批准号:070-016533)资助项目
关键词 剩余有限 minimax可解群 几乎正则自同构 residually finite, minimax soluble group, almost regular automorphism
  • 相关文献

参考文献12

  • 1Thompson J. Finite groups with fix-point-free automorphisms of prime order. Proc Nat Acad Sci, 1959, 45:578-581.
  • 2Higman G. Groups and rings having automorphisms without non-trivial fixed elements. J London Math Soc, 1957, 64:321-334.
  • 3Hartley B, Meixner T. Periodic groups in which the centralizer of an involution has bounded order. J Algebra, 1980, 64:285-291.
  • 4Endimioni G. On almost regular automorphisms. Arch Math, 2010, 94:19-27.
  • 5Endimioni G. Polycyclic group admitting an almost regular automorphisms of prime order. J Algebra, 2010, 323: 3142-3146.
  • 6Endimioni G, Moravec P. On the centralizer and the commutator subgroup of an automorphism. Monatsh Math, 2012, 167:165-174.
  • 7Robinson D J S. A Course in the Theory of Groups, Second Edition. New York: Springer-Verlag, 1996.
  • 8Segal D. Polycyclic Groups. Cambridge: Cambridge University Press, 1983.
  • 9刘合国.关于具有限秩的可解群[J].数学进展,2000,29(1):55-60. 被引量:8
  • 10Robinson D J S. Finiteness Conditions and Generalized Solvable Groups. Berlin: Springer-Verlag, 1972.

二级参考文献2

共引文献7

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部