期刊文献+

基于激光吸收光谱技术的燃烧场气体温度和浓度二维分布重建研究 被引量:20

Two-dimensional reconstructions of gas temperature and concentration in combustion based on tunable diode laser absorption spectroscopy
原文传递
导出
摘要 基于可调谐半导体激光吸收光谱技术和代数迭代算法(ART)实现燃烧场温度和浓度二维分布重建.采用时分复用技术,在1kHz扫描频率下分别扫描H2O的两条吸收谱线,7205.25和7416.05cm1,对温度分布在300—1100K范围内的气体温度场进行了重建.研究了投影角度和投影光线数目对温度场和浓度场重建结果的影响,并将温度场重建结果与热电偶测量结果进行比较,结果表明,采用四个投影方向时,温度场重建结果与热电偶测量结果除中心低温区域外基本符合.当光线数目减少时,通过在两条光线间增加虚拟光线,代入到迭代算法中,增加光线数目,提高了温度场和浓度场的重建效果.但此方法受到燃烧场温度梯度大小的影响,即在两条光线之间气体温度梯度较大,增加虚拟光线提高温度场重建效果不明显. Based on the tunable diode laser absorption spectroscopy, the combustion gas concentration and temperature distribution are reconstructed using algebraic iterative reconstruction technique (ART). Time division multiplexing technology is adopted to scan two H20 absorption transitions (7205.25 cm-1 and 7416.05 cm-1) simultaneously at 1 kHz repetition rate. The influences of projected angle and the number of beams on the temperature and concentration field reconstruction are studied. Compared with the thermocouple readings, the temperature distribution reconstruction has a well agreement except a low temperature area in the middle of the combustion field. Aiming to achieve an optimal reconstruction with a limited number of beams, a few virtual beams are added to the ART method. Through this method, the effectivenesses of temperature and concentration field reconstructions increase, but there is not an obvious improvement when a large gradient of temperature exists between two lines.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第24期116-124,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:90916015)资助的课题~~
关键词 可调谐半导体激光吸收光谱 温度场二维重建 浓度场二维重建 代数迭代算法 tunable diode laser absorption spectroscopy, two-dimensional temperature reconstruction, concentra-tion reconstruction, algebraic reconstruction technique (ART)
  • 相关文献

参考文献2

二级参考文献27

  • 1王健,黄伟,顾海涛,李鹰,刘立鹏,高秀敏.基于TDLAS的气体温度测量[J].光电子.激光,2006,17(10):1233-1237. 被引量:19
  • 2王飞,黄群星,李宁,严建华,池涌,岑可法.利用可调谐半导体激光光谱技术对含尘气体中NH_3的测量[J].物理学报,2007,56(7):3867-3872. 被引量:21
  • 3Carey S J, McCann H, Hindle F P, Ozanyan K B, Winterbone D E, Clough E2000 Chem. Engng. J. 77 111.
  • 4Zhang F Y, Fujiwara T, Komurasaki K 2001 Appl. Opt. 40 957.
  • 5Wolfe D C, Jr. Byer R L 1982 Appl. Opt. 21 1165.
  • 6Todd L A, Bhattacharyya R 1997 Appl. Opt. 36 7678.
  • 7Emmerman P J, Goulard R, Santoro R J, Semerjian H G 1980 J. Energy 4 70.
  • 8Chung K B, Gouldin F C, Wolga G J 1995 Appl. Opt. 34 5492.
  • 9Gillet B, Hardalupas Y, Kavounides C, Taylor A M K P 2004 Appl. Therm. Engng. 24 1633.
  • 10Wright P, Garcia-Stewart C A, Carey S J, Hindle F P, Pegrum S H, Colbourne S M, Turner P J, Hurr W J, Litt T J, Murray S C, Crossley S D, Ozanyan K B, McCann H 2005 Appl. Opt. 44 6575.

共引文献18

同被引文献167

引证文献20

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部