摘要
研究了一类食饵受病毒感染的生态流行病模型,考虑脉冲释放病毒颗粒和自然天敌来进行害虫治理.利用Floquet乘子理论、小振幅扰动技巧和比较定理证明了害虫灭绝周期解的全局渐近稳定性以及系统持续生存的充分条件.结果为现实的害虫管理提供了科学依据.
Abstract: In this paper, a pest management viral infection model with impulsive releass sof viral particles and natural enemies is proposed and investigated . The flmctional response of the predator is described by the abstract function satisfying certain assumptions, The sufficient conditions of globally asymptotic stability of pest eradication periodic solution and the perma-nence of tile model are obtained by using Eloquet's theorem , small -amplitude perturbation skills and comparison theorem . The results provide effective tactic basis for the practical pest,management .
出处
《生物数学学报》
CSCD
2012年第4期663-672,共10页
Journal of Biomathematics
基金
陕西省科技厅自然科学基金(No.2011JQ1015)
陕西科技大学校内自选项目基金(No.ZX10-37)
榆林市科技局产学研项目(2011)
关键词
脉冲
功能反应
全局渐近稳定
一致持久
Impulsive
Functional Response
Global Stability
Uniform Permanence