摘要
这篇文章应用系统生态数学研究了具有脉冲时滞效应两食饵一捕食者Watt型功能反应的模型.通过应用脉冲方程理论,脉冲比较原理以及一些条件得到了捕食者灭绝周期解存在和全局吸引.然后证明了周期解的持久性而且在该条件下系统至少有一个周期解.
In this paper, we investigate an impulsive delay one-predator two-prey model with Watt-type functional response and perform a systematic mathematical and ecology study. By using the theories of impulsive equation, small amplitude peturbation skills and comparison technique, sufficient conditions ensuring the existence and global attractivity of the predator- extinction periodic solution. By using the Brouwer fixed point theorem, we prove that if the periodic system is permanent, then there is at least one Dositive periodic solution of the svstem
出处
《生物数学学报》
CSCD
2012年第4期677-688,共12页
Journal of Biomathematics
基金
国家自然基金项目(No.61074091)
湖北省自然基金项目(2010CDB10807)
湖北省教育委员科学基金(D20091305
D20101202)