期刊文献+

水动浮力

Hydrodynamic buoyancy
原文传递
导出
摘要 在自然界,存在水静浮力和水动浮力.一个在水下或水面静态的物体承受水静浮力,阿基米德发现水静浮力的定量值等于该物体的排水量.一个在水下或水面对水平面保持某一攻角运动的物体会激起水动浮力.从物理定性看,水动浮力与运动物体的速度、尺度、吃水深度、攻角的角度、水的密度以及体现重力场对流场作用的重力加速度等物理因素密切相关.如果用数学解析式表述水动浮力的定量值,那么它是这些物理因素的函数.人们希望知道水动浮力,为此,提出研究这个问题.本文利用一种新的积分变换求解水动浮力问题,得到水动浮力定量值的解析表达式,该式概括了运动物体相关物理因素对水动浮力的贡献和它们之间的相互制约关系,与物理定性相符合.用本文的结果设计建造的实船,在实航验证时显示:理论计算得到的结果与试验实测得到的数据相符合.这表明,本文的研究结果是符合实际的,具有普遍意义.该方法可解决很多水动力工程的设计和生产问题.本文在最后,对比我们的研究结果,对前人的水动升力近似估算式做了讨论. In nature, there exists the hydrostatic buoyancy and the hydrodynamic buoyancy practically. A body in static state under or on the water surface bears the hydrostatic buoyancy. Archimedes discovered that the quantitative value of the hydrostatic buoyancy equals the weight of the same volume water displaced by the said body. A moving body keeping an attack angle against the horizontal plane under or on the water surface would arouse the hydrodynamic buoyancy. Inferring from physical qualitative analysis, the hydrodynamic buoyancy is closely related with the physical factors of velocity, size, draft depth, attack angle of moving body, water density, and gravity acceleration embodying the action of gravity field to the fluid field. If the quantitative value of the hydrodynamic buoyancy is expressed by mathematical analytical expression, then it is the function of these physical factors. People hope to know the hydrodynamic buoyancy. Here we present a research into this problem, applying a new integral transform to solve the problem of the hydrodynamic buoyancy, and an analytical expression of the quantitative value of the hydrodynamic buoyancy has been acquired. The said expression generalizes the related physical factors of the moving body that contribute to the hydrodynamic buoyancy and the mutual-restricting relationship among these factors, which agrees with the physical qualitative analysis. Using a boat we designed by the result of this paper, the experiments in navigation show that the result of the theoretical calculation is in good agreement with the data acquired from practical measurements in the experiments. This proves that the researching result of this paper agrees with practice and has general significance. The said method may solve many problems in the design and production of hydrodynamic engineering. Finally in this paper, compared with our researching result, the forefather's approximate calculation formulae of the hydrodynamic buoyancy have been discussed.
作者 陈振诚
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2012年第12期1352-1360,共9页 Scientia Sinica Physica,Mechanica & Astronomica
关键词 流体动力学 水动浮力 hydrodynamics, hydrodynamic buoyancy
  • 相关文献

参考文献9

  • 1姜次平,邵世明.船舶阻力.上海:交通大学出版社,1985.202-216.
  • 2陈振诚.水动浮力及其应用[J].中外船舶科技,2010(1):28-32. 被引量:1
  • 3陈振诚.A METHOD TO SOLVE BOUNDARY VALUE PROBLEMS[J].Chinese Science Bulletin,1981,26(1):16-23. 被引量:1
  • 4Chen Z C, Chen Y. Solar force-free magnetic fields on and above the photosphere. Sol Phys, 1989, 119(2): 279-299.
  • 5陈振诚.解决流体动力学某些问题的积分变换[C].第十二届全国水动力学研讨会论文集.1998.9.
  • 6Sneddon I N. Fourier Transform. Mineola: Dover Publications Inc., 1951.
  • 7Кочин Н Е, Кибель И А, Розе Н В. Теоретическая Гидромеханика. Огиз: Гостехниздат, 1948.399.
  • 8陈振诚,陈昕,陈旸.水动推进力及其应用[J].船舶,2011,22(1):10-15. 被引量:4
  • 9Faltinsen 0 M,著.崔维成,刘应中,葛春花,等译.海上高速船水动力学.国防工业出版社,2007.50-248.

二级参考文献16

  • 1陈振诚,陈昕.激起水动推进力的新船型[J].国际船艇,2005(5):28-30. 被引量:3
  • 2陈振诚,陈旸.水动力矩助船艇回转且抗倾覆[J].国际船艇,2006(1):34-35. 被引量:3
  • 3陈振诚,陈昕,陈旸.一种崭新的船舶运行原理[J].船舶工程,2006,28(4):17-21. 被引量:3
  • 4Jacob W.R, Tsakonas.S.A, New procedure for solution of lifting surfare problems [T]. Journal of hydronautics, 1969.3(1).
  • 5Courant R. Hillert D. Methematical physics, Volume 2, partial Differential Equations[M].Interscience publishers, John wiley & sons, 1962.
  • 6Robinson A, Laurmann J A.Wing Theory [M], University press Cambridge, 1956.
  • 7Milne-Thomsom L M.Theoretical Hydrodynamics (4th Edition ) [ M ].
  • 8Chen Zhen-cheng. A method to solve Boundary Value problem [J] .Kexue Tongbao,Vol.26.No.1,1981 ,P.16-23.
  • 9Chen Zhen-cheng and Chen Yang. Solar Force-free Magnetic fields on and above the Photosphere [J] Appendix, An Integral Transform, Solar Physics, 1989,P 294-299.
  • 10陈振诚.解决流体动力学某些问题的积分变换[C].第十二届全国水动力学研讨会论文集.1998.9.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部