期刊文献+

网络的平均度对复杂网络上动力学行为的影响 被引量:5

Effects of Average Degree on Network Dynamics
下载PDF
导出
摘要 本文考察了网络的平均度对网络上的同步、博弈和传播动力学行为的影响。结果发现,随着平均度的增大,复杂网络会表现出更优的同步能力,在博弈中合作率会显著提升,在传播动力学中传播范围会明显扩大。但平均度对这几种动力学行为的影响强度却是不同的:对于同步来说,平均度比较小时效果更明显;对于博弈来说,合作概率随着平均度的增加线性增加;而对于传播来说,平均度较大时效果较显著。另外,本文还发现一个有趣的现象:度分布异质性很强的无标度网络表现出比预想中强得多的同步能力,尤其是对于耦合矩阵是归一化的拉普拉斯矩阵的情况。本文定量地分析了平均度对网络上的几个重要动力学行为的影响,进一步深化了人们对平均度的影响的认识。 The effects of average degree on synchronization,games and information spreading are studied.The results show that increasing the average degree will enhance the synchronizability of networks,increase the cooperation rate in network,games and enlarge the spreading scale of information.Besides,it's found that the scale-free networks whose degree distribution is heterogeneous,show the synchronizability is strong when the coupling matrix is Laplacian and it is even stronger when the coupling matrix is normalized Laplacian.This study sheds light on the effects of average degree on the dynamical behavior of complex networks,which may be useful for the regulation of the corresponding dynamical behavior.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2012年第3期88-93,共6页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11165003) 教育部重点项目资助课题(210166) 广西研究生教育创新计划项目资助课题(2011106020702M39)
关键词 网络 平均度 动力学行为 network average degree dynamic behavior
  • 相关文献

参考文献13

  • 1ERDOS P,RENYIR A. On random graphs I [J]. Publ Math Debrecen, 1959,6 : 290-297.
  • 2ERDOS P,RENYIR A. On the evolution of random graphs[J]. Publ Math Inst Hung Acad Sci, 1960,5:17-61.
  • 3WATTS D J, STROGATZ S H. Collective dynamics of 'small-w0rld' networks [J]. Nature, 1998, 393 (6684) : 440- 442.
  • 4BARABdSI A L, ALBERT R. Emergence of scaling in random networks [J]. Science, 1999,286 (5439) : 509-512.
  • 5PECORA L M,CARROI.I. T 1: Master stability functions for synchronized coupled systems[J]. Phys Rev Lett, 1998,80(10):2109 2112.
  • 6BARAHONA M, PECORA L M. Synchronization in small-world systems [J]. Phys Rev Lett, 2002,89 (5):54101- 54105.
  • 7WANG Xiao-fan,CHEN Guan-rong. Synchronization in complex dynamical networks and its applications [J]. Interna- tional Journal of Bifurcation and Chaos, 2002,12(1):187 192.
  • 8SZABO C,I?ATH G. Evolutionary games on graphs[J]. Phys Rep, 2007,446 : 97 216.
  • 9NOWAK M A ,SIGMUND K. Evolution of reciprocity[J]. Nature, 2005,437: 1291-1298.
  • 10陈亮,朱士群.小世界网络中的公共物品博弈[J].苏州大学学报(自然科学版),2008,24(3):55-59. 被引量:6

二级参考文献16

  • 1von Neumann J, Morgenstern O. Theory of Games and Economic Behavior [ M ]. Princeton:Princeton University, 1944.
  • 2Nowak M A. Evolutionary Dynamics [ M ]. Cambridge : Harvard University Press ,2006.
  • 3Ball P. Critical Mass: How One Thing Leads Another [ M]. London: William Heinemann,2004.
  • 4Swedberg R. Sociology and game theory :contemporary and historical perspectives [ J]. Theory and Society ,2001,30: 301 -335.
  • 5Nowak M A, Sigmund K. Evolutionary dynamics of biological games [ J]. Science ,2004,303 : 793 - 799.
  • 6Herz A V. Collective phenomena in spatially extended evolutionary games [ J]. Journal of Theoretical Biology, 1994,169:65 -87.
  • 7Pollock G B. Evolutionary stability of reciprocity in a viscous lattice [ J]. Social Networks, 1989,11 : 175 - 212.
  • 8Hauert C. Effects of space in 2 ×2 games [J]. Int J Bifurc Chaos,2002,12: 1531 - 1548.
  • 9Nowak M A, Sigmund K. Evolution of indirect reciprocity [ J]. Nature,2005,437 : 1291 - 1298.
  • 10Axelrod R. The Evolution of Cooperation [ M]. New York: Basic Books, 1984.

共引文献5

同被引文献26

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部