期刊文献+

域上保持矩阵D-逆的线性算子

Linear operators preserving Drazin inverses of matrices over fields
下载PDF
导出
摘要 设F是至少包含5个元素的域,令Mn(F)为F上的n×n全矩阵代数。在广义逆保持的研究中,特征为2的域上的工作尚不多见,并且由于工作难度大,关于特征2的情形的工作不仅没有加法映射的结果,而且即使是线性映射也只是讨论可逆的情形,并且在基础域附加一些条件。文中刻画当chF=2且n≥m≥2时,从Mn(F)到Mm(F)保持矩阵D-逆的线性算子的形式。利用保幂等的结论证明f为从Mn(F)到Mm(F)的保持矩阵D-逆的非零线性算子当且仅当存在P∈GLn(F),使得f(A)=PAP-1,A∈Mn(F);或者存在P∈GLn(F),使得f(A)=PAtP-1,A∈Mn(F)。 Let F be a field with at least five elements,Mn(F) the n×n full matrix algebra over F.However,when the characteristic of the base field was 2,as to the preserving of the generalized inverses,the results were less.As to the characteristic 2,because of higher difficulty no results on the addition maps were obtained and more the discussed linear maps were invertible plus more conditions on the base fields.In this paper,we determine the forms of linear maps from Mn(F) to Mm(F)preserving Drazin inverses of matrices under chF=2 and n≥m≥2.Using the conclusions of idempotent-preserving,it is proved that f is the nonzero linear maps from Mn(F) to Mm(F) preserving Drazin inverses of matrices,if and only if there exists P∈GLn(F),such thatf(A)=PAP-1,A∈Mn(F),or there exists P∈GLn(F),such that f(A)=PAtP-1,A∈Mn(F).
出处 《黑龙江工程学院学报》 CAS 2012年第4期76-78,共3页 Journal of Heilongjiang Institute of Technology
基金 黑龙江省教育厅科学技术研究项目(12523038)
关键词 线性算子 D-逆 field linear map Drazin inverse
  • 相关文献

参考文献10

  • 1M.P.Drazin. Pseudo inverses in associative rings and semigroups[J].American Mathematical Monthly,1958.506-514.
  • 2C.K.Li,N.K.Tsing. Linear preserver problem:A brief introduction and some special techniques[J].Linear Algebra and Its Applications,1992.217-235.
  • 3C.G.Cao,X.Zhang. Additive operators preserving idempotent matrices over fields and applications[J].Linear Algebra and Its Applications,1996.327-338.
  • 4Zhang X,Cao C.G,Bu C.J. Additive maps preserving M-P inverses of matrices over fields[J].Lin Multilinear Alg,1999.199-211.
  • 5S.Liu,D.Zhao. Introduction to Linear Preserver Problems[M].Harbin Press:P.R.C,1997.92-94.
  • 6卜长江,曹重光.域上矩阵群逆的加法保持映射[J].Journal of Mathematical Research and Exposition,2004,24(3):503-507. 被引量:6
  • 7刘玉,张显.保矩阵M-P逆的线性算子[J].南昌大学学报(理科版),1997,21(4):364-368. 被引量:9
  • 8卜长江,周洪玲.保域上矩阵群逆的线性算子(英文)[J].数学研究,2006,39(2):133-138. 被引量:3
  • 9C.J.Bu. Linear maps preserving Drazin inverses of matrices over fields[J].Linear Algebra and Its Applications,2005.159-173.
  • 10S.W.Liu. Linear maps preserving idempotence on matrices modules over principal ideal domains[J].Linear Algebra and Its Applications,1997.219-231.

二级参考文献10

  • 1张显 曹重光.保不变量的矩阵加群同态[M].哈尔滨:哈尔滨出版社,2001..
  • 2华罗庚,典型群,1963年
  • 3LI C K, TSING N K. Linear preserver problems: a brief introduction and Some special techniques [J].Linear Algebra Appl. , 1992, 162-164: 217-235.
  • 4OMLADIC M, SEMRL P. Spectrum-preserving additive maps [J]. Linear Algebra Appl., 1991, 153:67-72.
  • 5OLADIC M, SEMRL P. Additive mappings preserving operators of rank one [J]. Linear Algebra Appl., 1993, 182: 239-256.
  • 6CAO Chong-guang, ZHANG Xian. Additive operators preserving idempotente matrices over fields and applications [J]. Linear Algebra Appl. , 1996, 248: 327-338.
  • 7ZHANG Xian, CAO Chong-guang, BU Chang-jiang. Additive maps preserving M-P inverses of matrics over fields [J]. Linear. Multilinear Algebra, 1999, 46: 199-211.
  • 8BELL J, SOUROUR A R. Additive rank-one mapping on triangular matrix algebras [J]. Linear Algebra Appl. , 2000, 312: 13-33.
  • 9曹重光.域上矩阵Moore-Penrose逆的线性保持算子[J].黑龙江大学自然科学学报,1991,8(3):48-51. 被引量:4
  • 10郝立丽,曹重光.保矩阵群逆的线性算子[J].黑龙江大学自然科学学报,2003,20(2):32-34. 被引量:9

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部