期刊文献+

基于fuzzyTECH智能小车神经模糊控制器的实现 被引量:2

Implementation of Neuro-Fuzzy controller for smartcar based on fuzzyTECH
下载PDF
导出
摘要 【目的】设计智能小车神经模糊控制器,并对其参数进行优化。【方法】基于模糊控制理论,利用神经网络自学习的能力,通过fuzzyTECH平台设计并调试智能小车神经模糊控制器。【结果】结合模糊控制器强大的推理能力与神经网络自学习能力,解决了传统PID控制器控制参数固定,难以适应多种路面状况的难题,并克服了传统模糊控制器后期参数优化难的不足。物理验证试验表明,基于该算法的控制器具有较高的稳定性、适应性与实时性。【结论】所设计的控制器具有较强的实用性,可以满足智能车控制器的要求。 【Objective】 The purpose of this paper was to design a Neuro-Fuzzy controller for a smartcar and optimize its parameters.【Method】 The Neuro-Fuzzy controller for a smartcar was designed and debugged through fuzzyTECH,based on fuzzy control theory and the self-learning ability in neural network.【Result】 This work combined the benefits of the strong reasoning ability in fuzzy controller and self-learning ability in neural network.It also solved the problem that a traditional PID controller with fixed parameters was difficult to adapt to different situations and overcome the difficulty in parameters of traditional fuzzy controller for optimizing in the later stage.Physical experiments showed that the proposed Neuro-Fuzzy controller,had better performance on stability,adaptability and real-time capability than the traditional one.【Conclusion】 The designed controller has a strong practical applicability and meets the demands of a smartcar controller.
出处 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2012年第12期230-234,共5页 Journal of Northwest A&F University(Natural Science Edition)
基金 国家自然科学基金项目(60443008) 中南大学大学生创新性试验计划项目(LC08124)
关键词 神经网络 模糊控制 fuzzyTECH 智能小车 neural network fuzzy control fuzzyTECH smartcar
  • 相关文献

参考文献15

  • 1欧阳磊,黄友锐,黄宜庆.基于模糊RBF神经网络的PID及其应用[J].计算机工程,2008,34(22):231-233. 被引量:19
  • 2Patil A B, Salunkhe A V. Adaptive neuro fuzzy controller for process control system [C]//2008 IEEE Region 10 Colloquium and the Third International Conference on Industrial and Infor mation Systems. Kharagpur, India: Institute of Electrical and Electronics Engineers(IEEE), 2008 : 1-5.
  • 3Wang G J ,Wang Z X,Wu Y R,et al. The application of Neuro- fuzzy controller in the washing machine control system [C]// Second International Conference on Intelligent Computation Technology and Automation. Changsha, Hunan: IEEE Com- puter Society, 2009 : 818 -821.
  • 4Baturone I, Moreno-Velo F J, Sanchez-Solano S, et al. Auto- matic design of fuzzy controllers for car-like autonomous ro- bots [J]. IEEE Transactions on Fuzzy Systems, 2004,12 (4): 447-465.
  • 5Wang J W,Wu H N, Li H X. Distributed fuzzy control design of nonlinear hyperbolic PDE systems with application to non isothermal plug-flow reactor [J]. IEEE Transactions on Fuzzy Systems,2011,19(3) : 514-526.
  • 6Ghods A, Kian A,Tabibi M. Adaptive freeway ramp metering and variable speed limit control:A genetic fuzzy approach [J]. IEEE Transactions on Intelligent Transportation Systems Magazine, 2009,1 (1) : 27- 36.
  • 7Aras M S M,Ali F A,Azis F A,et al. Performances evaluation and comparison of two algorithms for fuzzy logic rice cooking system(MATLAB fuzzy logic toolbox and fuzzyTECH)[C]// 2011 IEEE Conference on Open Systems. Langkawi, Malaysia: Institute of Electrical and Electronics Engineers(IEEE), 2011: 400-405.
  • 8Iraji M S, Jahromi A H E, Tosinia A. Failure detection and classification of circular sheets through the methods of percep tron neural network, I.VQ and neurofuzzy using matlah and fuzzyTECH software [C]//2010 International Conference on Intelligent and Advanced Systems (ICIAS). Kuala Lumpur, Malaysia: Insititute of Electrical and Electronics Engineers (1EEE), 2010 : 1-6.
  • 9Chen G Y,Li Z H. Automatic route tracking of smartcar based on fuzzy control [C]//Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing. Insititute of Electrical and Electronics Engineers(IEEE),2008:719-723.
  • 10Li J,Zhou S,Xu S. Fuzzy control system design via fuzzy lya punov functions [J]. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 2008, 38 (6): 1657- 1661.

二级参考文献8

共引文献18

同被引文献30

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部