期刊文献+

广义Burgers-Huxley方程解的数值模拟 被引量:1

The numerical simulation of the solutions for the generalized Burgers-Huxley equation
下载PDF
导出
摘要 广义Burgers-Huxley方程是一个非常重要的模型,在流体力学、化学反应、生物工程、自动控制等领域有着广泛的应用.借助于有限差分、对角隐式Runge-Kutta-Nystrm(DIRKN),对广义Burgers-Huxley方程的精确解进行了数值模拟,由模拟的图形及误差可以看出本文的方法是有效的,但是若方程的非线性较强时,数值结果的误差相对较大. The generalized Burgers-Huxley equation is an important model, it has wide applications in fluid mechanics, chemical reaction, bioengineering, automatic control, etc. In this paper, the exact solutions of the generalized Burgers-Huxley equation are numerically simulated using the finite difference method and diagonal implicit Runge-Kutta-Nystrom method. From the simulation figures and errors, the method used in this paper is efficient, if the nonlinearity is strong, the error becomes bigger.
出处 《南阳师范学院学报》 CAS 2012年第12期6-10,共5页 Journal of Nanyang Normal University
基金 河南省基础与前沿技术研究项目(092300410179 122102210427) 河南科技大学科研创新能力培育基金(2011CX011) 河南科技大学博士启动基金(09001204) 河南科技大学SRTP(2011133)资助项目
关键词 广义Burgers-Huxley方程 有限差分格式 DIRKN法 数值模拟 the generalized Burgers-Huxley equation finite difference scheme DIRKN method numerical simulation
  • 相关文献

参考文献12

  • 1Satsuma J,Ablowitz M,Fuchssteiner B,KruskalM. Topics in Soliton Theory and Exactly Solvable Nonlinear equations[M].Word Scientific,Singapore,1987.
  • 2Wang X Y,Zhu Z S,Lu Y K. Solitary wave solutions of the generalized Burgers-Huxley equation[J].Journal of Physics A:Mathematical and General,1990.271-274.
  • 3Hodgkin A L,Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J].The Journal of Physiology,1952.500-544.
  • 4Fitzhugh R. Mathematical models of excitation and propagation in nerve[A].Nyork:McGraw-Hill,1969.1-85.
  • 5Ismail H,Raslan K,Rabboh A. Adomian decomposition method for Burgers-Huxley and Burgers-Fisher equations[J].Applied Mathematics and Computation,2004.291-301.
  • 6Hashim I,Noorani M S M,A1-Hadidi M R S. Solving the generalized Burgers-Huxley equation using the Adomian decompo-sition method[J].Mathematical and Computer Modelling,2006.1404-1411.
  • 7Javidi M,Golbabai A. A new domain decomposition algorithm for generalized Burgers-Huxley equation based on chebyshev polynomials and preconditioning[J].Chaos,Solitons and Fractals,2009.849-857.
  • 8Bataineh A,Noorani M S M,Hashim I. Analytical Treatment of Generalized Burgers-Huxley Equation by Homotopy Analysis Method[J].Bull Malays Math Sci Soc,2009.233-243.
  • 9Batiha B,Noorani M S M,Hashim I. Application of variational iteration method to the generalized Burgers-Huxley equation[J].Chaos,Solitons and Fractals,2008.660-663.
  • 10Gao H,Zhao R X. New exact solutions to the generalized Burgers-Huxley equation[J[J].Applied Mathematics and Computation,2010.1598-1603.

同被引文献14

  • 1廖世俊.超越摄动--同伦分析方法导论[M].北京:科学出版社,2007.
  • 2Cole J D. On a quasi linear parabolic equation occuring in aerodynamics[J]. Quart Appl Math, 1951, 9(3): 225-236.
  • 3Hashim I, Noorani M S M, SaldA1-Hadidi M R. Solving the generalized Burgers-Huxley equation using the Adomian decomposition method[J]. Mathematical and Computer Modelling. 2006, 43(11- 12): 1404-1411.
  • 4Murat Sari,Giirhan Giirarslan.A sixth-order compact finite difference scheme to the numerical so- lutions of Burgers' equation[J]. Applied Mathematics and Computation. 2009, 208(2): 475-483.
  • 5Shu-Sen Xie,Sunyeong Heo,Seokchan Kim,et al.Numerical solution of one-dimensional Burgers' equation using reproducing kernel function[J]. Journal of Computational and Applied Mathematics. 2008, 214(2): 417-434.
  • 6Trgut Ozis,Ali Ozdes.A direct variational methods applied to Burgers' equation[J].Journal of Com- putational and Applied Mathematics. 1996, 71(2): 163-175.
  • 7Refik A, Bahadir, Mustafa Saglam. A mixed finite difference and boundary element approach to one-dimensional Burgers' equation[J]. Applied Mathematics and Computation, 2005, 160(3): 663- 673.
  • 8T.Ozis E N, Aksan A.Ozdes. Afinite element approach for solution of Burgers' equation[J]. Applied Mathematics and Computation, 2003, 139(2-3): 417-428.
  • 9E.N.Aksan, A.Ozdes. A numerical solution of Burgers' equation Applied[J]. Mathematics and Computation, 2004, 156(2): 395-402.
  • 10Abdulkadir Dogan. A Galerkin finite element approach to Burgers' equation[J]. Applied Mathe- matics and Computation, 2004, 157(2): 331-346.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部