摘要
引入岩石水力流动单元概念,以测井综合评价为基础,利用神经网络技术建立测井响应与岩石水力流动单元关系,根据岩心数据和测井响应划分储层垂向流动单元,并针对每一类型的流动单元确定其孔隙度、渗透率相关性。提出了确定流体性质等参数和泄油半径、水力压裂裂缝等参数以及裂缝渗透率、表皮系数的原则。基于流动单元划分和改进的孔渗关系描述,应用拟稳态流产能预测方法进行在不同完井方式下的产能预测,该方法在大庆油田长垣扶杨油藏25口井压裂前后的产能预测中取得了良好的应用效果。
This paper introduces the concept of evaluation, we build the relationship between using neural network technology, and then, rock hydraulic flow unit. Based on integrated log logging responses and rock hydraulic flow unit divide vertical reservoir flow unit according to logging responses and determine the unique correlation between porosity and permeability for each type of flow unit. Proposes the rules of parameter determination, such as, parameters to determine flow property, oil leakage radius, hydraulic fracture, fracture permeability and epidermis coefficient. Based on the flow unit division and improvement of porosity and permeability relationship description, uses pseudo steady-state method in different completion modes to predict the reservoir production. This method achieves good results in the productivity prediction comparison before and after fracturing for 25 wells of Changyuan Fuyang reservoir in Daqing oilfield.
出处
《测井技术》
CAS
CSCD
北大核心
2012年第6期652-657,共6页
Well Logging Technology
关键词
生产测井
产能预测
低孔隙度
低渗透率
流动单元
神经网络
拟稳态流
长垣扶杨油藏
production logging, productivity prediction, low porosity, low permeability, flow unit, neural network, pseudo steady-state, Changyuan Fuyang reservoir