期刊文献+

增量式正交局部判别投影法

Orthogonal locally discriminant projection algorithm for incremental data
原文传递
导出
摘要 针对现有投影分析算法随着输入数据量的增加计算复杂度急剧增长这一问题,通过子块优化策略构建了目标投影模型,称之为增量的局部判别投影(ILDP)算法。算法兼顾样本的类间离散度和类内紧凑性,求得的投影矩阵还具有正交性;通过子块叠加和奇异值升级算法对模型的求解进行了增量式扩展,计算过程中并无出现矩阵逆操作,即规避了小样本问题。在COIL图像库、USPS手写字体库和ExYaleB人脸库中的实验表明,对比经典的ILDA、LSDA、MMP等降维算法,ILDP具有更高的识别率,尤其在USPS数据库中,ILDP的识别率接近于90%,而其它的算法识别率都低于85%。与此同时,ILDP的计算量也明显少于对比算法,在USPS数据库中仅需要少于0.5s的时间即可完成最优投影矩阵计算。 The standard implementation of traditional projection algorithms takes all the training samples as the input data, which scales badly with the dataset size and makes computations for large samples application infeasible. We introduce a block optimization and batch alignment strategy to propose a novel locally discriminant projection (LDP) algorithm for solving this problem. The advantages of the proposed algorithm are:Firstly,it preserves the intra class structure of the manifold and maximizes margins between the data of different classes;Secondly, the final projection matrix of the proposed algorithm has the orthogonality property;Thirdly, there is no small sample size problem in this algorithm; Finally, LDP can be easily extended to the incremental LDP (ILDP) for learning the locally discriminant subspace with the newly inserted data by employing the singular value decomposition updating algorithm. The experimental data by employing the singular value decomposition updating algoirthm. The experimental results on COIL image database, USPS hand written digit database on ExYaleB face database demonstrate that ILDP has higher recognition rate compared with the classical ILDA, LSDA and MMP algorithms. Especially in the USPS database, ILDP reaches recognition rate of 90% while the others are all below 85%. Meanwhile, ILDP bears less computational cost, which needs only less than 0. 5 s for training USPS database.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2013年第1期161-169,共9页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61070043) 浙江省自然科学基金(LQ12F03011)资助项目
关键词 维度约简 增量式学习 奇异值分解 正交局部判别 dimensionality reduction incremental learning singular value decomposition orthogonal locally discriminant
  • 相关文献

参考文献17

  • 1郭金玉,孔晓光,李元,曾静.基于多线性核主成分分析的掌纹识别[J].光电子.激光,2011,22(2):288-291. 被引量:13
  • 2林玉娥,李敬兆,梁兴柱,林玉荣.直接正交鉴别保局投影算法[J].光电子.激光,2012,23(3):561-565. 被引量:4
  • 3谢钧,刘剑.一种新的局部判别投影方法[J].计算机学报,2011,34(11):2243-2250. 被引量:15
  • 4Kokiopoulou E, Saad Y. Orthogonal neighborhood preser- ving projections:a projection-based dimensionality reduc- tion technique[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,2,9(12) ;2143-2156.
  • 5Cai D,He X F,Zhou K. Locality sensitive discriminant a- nalysis[A]. International Joint Conferences on Artificial Intelligence[C]. 200"7,708-713.
  • 6He X F,Cai D, Hang J W. Learning a maximum margin subspace for image retrieval[J]. IEEE Trans. on Knowl- edge and Data Engineering,2008,20(2) :189-201.
  • 7Wei B, Tao D C. Biased discriminant euclidean embed- ding for content-based image retrieval[J]. IEEE Transac- tions on Image Processing,2;O]O ,19(2) : 545-554,.
  • 8Cai H, Mikolajczyk K, Matas J. Learning linear discrimi- nant projections for dimensionality reduction of image de- scriptors[J]. IEEE Transactiions on Pattern Analysis and Machine Intelligence, 2010,33(2) : 338-352.
  • 9Shu X, Gao Y, Lu H. Efficient linear discriminant analysis with locality preserving for face recognition [J]. Pattern Recognition, 2012,45 (5) :1892-1898.
  • 10CUI Yan, FAN Li-ya. A novel supervised dimensionality reduction algorithm, Graph-based Fisher analysis [J] Pattern Recognition,2012,45(4) :1471-1481.

二级参考文献62

  • 1郭金玉,苑玮琦,李元.基于数字相关滤波器的掌纹识别[J].光电子.激光,2009,20(10):1353-1356. 被引量:5
  • 2黄国宏,邵惠鹤.核主元分析及其在人脸识别中的应用[J].计算机工程,2004,30(13):13-14. 被引量:18
  • 3李强,裘正定,孙冬梅,刘陆陆.基于改进二维主成分分析的在线掌纹识别[J].电子学报,2005,33(10):1886-1889. 被引量:36
  • 4陶俊伟,姜威.改进的基于二维主分量分析的掌纹识别[J].光学技术,2007,33(2):283-286. 被引量:12
  • 5Martinez A M, Kak A C. PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233.
  • 6Mika S, Scholkopf B, Smola A, Muller K R, Scholz M, Ratsch G. Kernel PCA and de-noising in feature spaces. In: Proceedings of the Conference on Advances in Neural Information Processing Systems. Denver, Colorado: MIT Press, 1999. 536-542.
  • 7Weng J Y, Zhang Y L, Hwang W S. Candid covariancefree incremental principal componet analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(8): 1034-1040.
  • 8Zhang Y L, Weng J Y. Convergence Analysis of Complementary Candid Incremental Principal Component Analysis, Technical Report MSU-CSE-01-23, Michigan State University, USA, 2001.
  • 9Papadimitriou S, Sun J, Faloutsos C. Streaming pattern discovery in multiple time-series. In: Proceedings of the 31st International Conference on Very Large Data Bases. Trondheim, Norway: ACM, 2005. 697-708.
  • 10Scholkopf B, Smola A, Muller K R. Nonliear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10(5): 1299-1319.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部