期刊文献+

高水解度大豆寡肽专用复合酶的配方优化 被引量:2

Development and Optimization of a Specialized Multi-enzyme Complex for the Production of Soybean Oligopeptides with High Degree of Hydrolysis
下载PDF
导出
摘要 为提高大豆分离蛋白(SPI)的水解度,实现深度酶解,生产低分子质量寡肽,比较不同蛋白酶与不同配方的复合酶对SPI的水解能力,并采用响应面法对复合酶的组成进行优化。结果表明:不同蛋白酶对SPI的酶解能力不同,其中以碱性蛋白酶的水解度寡肽收率最高。多酶复合水解可以提高SPI的水解度与寡肽收率,其中以同时加入碱性蛋白酶、风味蛋白酶和中性蛋白酶进行水解时水解度最高。由此3种酶组成的复合酶的最佳组成是碱性蛋白酶39.6%、风味蛋白酶25.4%、中性蛋白酶35.0%,最适用量为SPI干质量的3%。以此复合酶在55℃、SPI质量浓度10g/100mL、自然pH值的条件下酶解6h,SPI的水解度可达27.2%,寡肽收率高达83%。 In the present study,alcalase,flavourzyme,neutral protease,bromelin,papain and different combinations of alcalase with some or all of the four other proteases were compared for their efficiency to hydrolyze soybean protein isolate(SPI) for the production of soybean oligopeptides.Alcalase provided maximum degree of hydrolysis(DH) and soybean oligopeptide yield among the five proteases.Both parameters could be improved by combining alcalase with the other proteases and maximum DH was achieved when flavourzyme and neutral protease were also used.Using response surface methodology,the optimal dosages of alcalase,flavourzyme and neutral protease were determined to be 39.6%,25.4% and 35.0%,respectively,and the optimal total protease dosage on the basis of dry weight of SPI was 3%.A DH as high as 27.2% and an oligopeptide yield as high as 83% were obtained after 6 h of hydrolysis at 55 ℃,natural pH and an SPI concentration of 10 g/100 mL with the optimized multi-enzyme complex.
出处 《食品科学》 EI CAS CSCD 北大核心 2012年第23期254-258,共5页 Food Science
关键词 大豆寡肽 大豆分离蛋白 蛋白酶 水解度 响应面法 soybean oligopeptides soybean protein isolate protease degree of hydrolysis(DH) response surface methodology(RSM)
  • 相关文献

参考文献19

  • 1CHAPMAN H, LIU K. Expanding soybean food utilization[J]. Food Technology, 2000, 54(7): 46-58.
  • 2崔凌飞,王遂.蛋白质及其水解物的分析应用[J].哈尔滨商业大学学报(自然科学版),2002,18(1):117-120. 被引量:16
  • 3YASUYUKI T, YOSHIKAWA M. Introduction of enterostatin (VPDPR) and a related sequence into soybean proglycinin AlaBlb subunit by site directed mutagenesis[J]. Biosci Biotech Biochem, 2000, 64(12): 2731-2733.
  • 4CHIANG W D, TSOU M J, TSAI Z Y, et al. Angiotensin I -converting enzyme inhibitor derived from soy protein hydrolysate and produced by using membrane reactor[J]. Food Chem, 2006, 98(4): 725-732.
  • 5AOYAMA T, FUKUI K, TAKAMATSU K, et al. Soy protein isolate and its hydrolysate reduce body fat of dietary obese rats and genetically obese mice (yellow KK)[J]. Nutrition, 2000, 16(5): 349-354.
  • 6KONG Xinzheng, GUO Mingming, HUA Yufei, et al. Enzymatic preparation of immunomodulating hydrolysates from soy proteins[J]. Bioresource Technology, 2008, 99(18): 8873-8879.
  • 7RADHA C, PRAKASH V. Structural and functional properties of heat processed soybean flour: effect of proteolytic modification[J]. Food Science and Technology International, 2009, 15(5): 453-463.
  • 8TSUMURA K. Improvement of physicochemical properties of soybean proteins by enzymatic hydrolysis[J]. Food Science and Technology Research, 2009, 15(4): 381-388.
  • 9ACHOURI A, ZHANG W. Effect of succinylation on the physicochemical properties of soy protein hydrolysate[J]. Food Research International, 2001, 34(6): 507-514.
  • 10DICKINSON E. Hydrocolloids as emulsifiers and emulsion stabilizers[J]. Food Hydrocolloids, 2009, 23(6): 1473-1482.

二级参考文献81

共引文献658

同被引文献15

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部