期刊文献+

全钒液流电池的质子传导膜研究 被引量:3

Study on proton conductive membranes for all-vanadium redox flow battery
下载PDF
导出
摘要 研究质子传导膜对全钒液流电池性能的影响,包括膜面电阻、阻钒性以及质子传导膜厚度,为研究开发适用于全钒液流电池的质子传导膜提供依据.通过测定钒电池循环充电/放电过程的效率、暂态极化曲线、静态交叉放电曲线,建立选择与优化膜材料的评价方法;在考察膜电导率、膜厚、阻钒性和机械强度的综合性能指标后,认为膜面电阻在0.3~0.5Ω.cm2范围,具备优良阻钒性能条件下,膜厚约150μm比较合适.使用符合该性能的聚偏氟乙烯质子传导膜时,钒电池能量效率超过70%,有望满足发展大容量蓄电储能装备的需要. Proton conductive membrane used in the all-vanadium redox flow battery was discussed in this paper, including the effect of membrane's area resistance, vanadium permeability, and thickness on the battery. It contributes a basis for proton conductive membraner s research. By using the methods of transient polarization curves, cross-discharging curves, and battery efficiency test, the results showed that : considering the membrane conductivity, thickness, vanadium permeability, and mechanical strength, the membrane's area resistance should be 0.3~0.5Ω·cm2 , and with good vanadium permeability and thickness should be about 150μm. The energy efficiency of the battery used PVDF-based membranes could up to 70%, which met the needs of developing the large-scale energy storage devices.
出处 《膜科学与技术》 CAS CSCD 北大核心 2012年第6期34-38,共5页 Membrane Science and Technology
基金 国家自然科学基金资助项目(20876086 21076112) 国家"863"课题(2007AA05Z245) 国家重点基础研究发展计划(973计划)项目(2010CB227202)
关键词 全钒液流电池 质子传导膜 膜面电阻 阻钒性 膜厚 电池效率 all-vanadium redox flow battery proton-conductive membrane membrane area resistance permeability membrane thickness battery efficiency
  • 相关文献

参考文献8

  • 1Rychcik M, Skyllas - Kazacos M. Characteristics of a new all-vanadium redox flow battery [J]. J Power Sourc, 1988,22(1):59-67.
  • 2Zhao Ping, Zhang Huaming, Zhou Hantao, et al. Char- acteristics and performance of 10 kW class all-vanadium redox-flow battery stack[J]. J Power Sourc, 2006, 162 (2) : 1416-1420.
  • 3尹海涛.全钒液流电池蓄电储能系统研究[D].北京:清华大学,2006.
  • 4文越华,张华民,钱鹏,衣宝廉.离子交换膜全钒液流电池的研究[J].电池,2005,35(6):414-416. 被引量:12
  • 5滕祥国,赵永涛,席靖宇,武增华,邱新平,陈立泉.全钒氧化还原液流电池用Nafion/有机硅复合膜[J].化学学报,2009,67(6):471-476. 被引量:11
  • 6王保国,龙飞,范永生,等.一种质子传导膜的制备方法[P].中国,发明专利授权号:CNl01475699B.2011-05-11.
  • 7范永生,陈晓,王保国.基于交流阻抗法的离子交换膜电阻研究[J].膜科学与技术,2011,31(2):14-18. 被引量:11
  • 8Mai Zhensheng, Zhang Huangming, Li Xianfeng,et al. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application [J]. J Power Sourc, 2011,196:482-487.

二级参考文献35

  • 1周德璧,于中一.锌溴液流电池技术研究[J].电池,2004,34(6):442-443. 被引量:20
  • 2李晓刚,刘素琴,黄可龙,桑商斌,陈立泉.全钒氧化还原液流电池集流体的性能[J].电池,2005,35(2):93-94. 被引量:17
  • 3陈金庆,汪钱,王保国.全钒液流电池关键材料研究进展[J].现代化工,2006,26(9):21-24. 被引量:19
  • 4Sum, E.; Skyllas-Kazacos, M. J. Power Sources 1985, 15, 179.
  • 5Sum, E.; Rychcik, M.; Skyllas-Kazacos, M. d. Power Sources 1985, 16, 85.
  • 6Skyllas-Kazacos, M.; Rychcik, M.; Robins, R. G.; Fane, A. G. J. Electrochem. Soc. 1986, 133, 1057.
  • 7Skyllas-Kazacos, M.; Kasherman, D.; Hong, D. R.; Kazacos, M. J. Power Sources 1991, 35, 399.
  • 8Shibata, A.; Sato, K. Power Engineering Journal 1999, 13, 130.
  • 9Shibata, A.; Sato, K.; Kanji, S.; Nakajima, M. Development of Vanadium Redox Flow Battery for Photovoltaic Genera- tion System, 1994 IEEE First World Conference on Photovoltaic Energy Conversion, IEEE Electron Devices Society, Hawaii, 1994, pp. 950.
  • 10Xi, J.-Y.; Wu, Z.-H.; Teng, X.-G.; Zhao, Y.-T.; Chen, L.-Q.; Qiu, X.-P. J. Mater. Chem. 2008, 18, 1232.

共引文献30

同被引文献42

  • 1潘建欣,谢晓峰,王金海,王树博,尚玉明,周涛.全钒液流电池模拟与仿真研究进展[J].化工学报,2011,62(S2):7-15. 被引量:15
  • 2张华民,赵平,周汉涛,衣宝廉.钒氧化还原液流储能电池[J].能源技术,2005,26(1):23-26. 被引量:35
  • 3何荣桓,李庆峰,Bjerrum Niels J..磷酸掺杂的ab-PBI膜及其在高温质子交换膜燃料电池中的应用[J].高等学校化学学报,2005,26(12):2302-2305. 被引量:11
  • 4Skyllas-Kazacos M,Rychick M,Robins R.All-vanadium redox battery:US,4786567[P].1986.
  • 5Skyllas-Kazacos M,Grossmith F.Efficient vanadium redox flow cell[J].J.Electrochem.Soc.,1987,134(12):2950-2953.
  • 6Zhao P,Zhang H,Zhou H,Chen J,Gao S,Yi B.Characteristics and performance of 10 kW class all-vanadium redox-flow battery stack[J].Journal of Power Sources,2006,162(2):1416-1420.
  • 7Skyllas-Kazacos M,Kazacos G,Poon G,Verseema H.Recent advances with UNSW vanadium-based redox flow batteries[J].Int.J.Energy Res.,2010,34(2):182-189.
  • 8Wang Chaoyang.Fundamental models for fuel cell engineering[J].Chem.Rev.,2004,104(10):4727-4766.
  • 9Ma L,Ingham D B,Pourkashanian M,Carcadea E.Review of the computational fluid dynamics modeling of fuel cells[J].J.Fuel Cell Sci.Technol.,2005,2(4):246-257.
  • 10Shah A A,Watt-Smith M J,Walsh F C.A dynamic performance model for redox-flow batteries involving soluble species[J].Electrochimica Acta,2008,53(27):8087-8100.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部