期刊文献+

不可压缩流问题低次元稳定有限体积数值方法研究 被引量:1

Numerical Study of Stabilization of the Lower Order Finite Volume Methods for the Incompressible Flows
原文传递
导出
摘要 分析了R^d,d=2,3维不可压缩流Stokes问题低次元稳定有限体积方法,它主要利用局部压力投影方法对两种流行但不满足inf-sup条件的有限元配对(P_1-P_0和P_1-P_1)在有限体积方法的框架下进行稳定;利用有限元与有限体积方法的等价性进行有限体积方法理论分析.结果表明不可压缩流Stokes问题在f∈H^1情况下,本文方法得到的解与稳定有限元方法解之间具有O(h^2)阶超收敛阶结果,且稳定有限体积方法取得了与稳定有限元方法相同的收敛速度,与稳定有限元方法比较,稳定有限体积方法计算简单高效,同时保持物理守恒,因此在实际应用中具有很好的潜力。 In this paper,the stabilized finite volume method is considered for the R^d,d = 2,3 Stokes equations approximated by the lower order finite element pairs (P_1 - Po and P_1 - P_1),which do not satisfy the so-called inf-sup condition.This method applies the local pressure projection to stabilize the lower order finite element. The convergence analysis also shows an important superclose result O(h^2) between the conforming mixed finite element solution and the finite volume solution using the same finite element pair for the incompressible flow.Based on the relationship between the finite element method and finite volume method,optimal estimate and superconvergenc result are obtained.Moreover,the stabilized finite volume method has a convergence rate of the same order as that of the usual stabilized finite element method of the stationary Stokes equations with additional regular assumption on the body force f∈H^1.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2013年第1期15-26,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(11071193 10971124) 教育部新世纪优秀人才支持计划(NCET-11-1041) 教育部留学同国人员基金 博士后基金(2012M511973) 陕西青年科技新星项目(2011kjxx12) 宝鸡文理学院基金(ZK11157)
关键词 不可压缩Stokes问题 低次元 INF-SUP条件 稳定有限元方法 稳定有限体积方法 Stokes equations the local pressure projection inf-sup condition stabilized finite element method stabilized finite volume method
  • 相关文献

参考文献1

二级参考文献8

  • 1余德浩,J Comput Math,1986年,4卷,1期,62页
  • 2祝家麟,计算数学,1986年,8卷,3期,281页
  • 3Han Houde,系统科学与数学,1985年,5卷,2期,121页
  • 4余德浩,1984年
  • 5冯康,1983年
  • 6余德浩,J Comput Math,1983年,1卷,3期,195页
  • 7余德浩,J Comput Math,1983年,1卷,1期,52页
  • 8应隆安,数学进展,1983年,12卷,2期,124页

共引文献20

同被引文献24

  • 1Li J, He Y.A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations[J].Appl Numer Math, 2008, 58: 1503-1514.
  • 2Bochev P B,Dohrmann C R,Gunzburger M D.Stabili- zation of low-order mixed finite elements for the stokes equations[J].SIAM J Numer Anal, 2006,44 : 82-101.
  • 3Temam R.Navier-Stokes equations, theory and numerical analysis[M].3rd ed.Amsterdam: s.n.], 1983.
  • 4Girault V,Raviart P A.Finite element method for Navier- Stokes equations:theory and algorithms[M].Berlin,Heidel- berg : Springer-Verlag, 1987.
  • 5He Y, Wang A, Li Mei.A stabilized finite element method for the stationary Navier-Stokes equations[J].Eng Math, 2005,51(4) :367-380.
  • 6Li J, He Y.A stabilized finite element method based on two local Gauss integral technique for the stationary stokes equations[J].J Comp Appl Math,2008,214 : 58-65.
  • 7Li J, He Y, Chen Z.A new stabilized finite element method for the transient Navier-Stokes equations[J].Comp Meth Appl Mech Eng,2007,197:22-35.
  • 8Li J.Investigations on two kinds of tw0-1evel stabilized finite element methods for the stationary Navier-Stokes equations[J].Appl Math Comput, 2006, 182 : 1470-1481.
  • 9Li J, Shen L, Chen Z.Convergence and stability of a stabilized finite volume method for stationary Navier- Stokes equations[J].BIT Numer Math,2010,50: 823-842.
  • 10Xu J.A novel two-grid method for semilinear elliptic equations[J].SIAM J Sci Comput, 1994,15:231-237.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部