期刊文献+

大围长图的广义无圈染色 被引量:1

The Generalized Acyclic Chromatic Number of Graphs with Large Girth
原文传递
导出
摘要 图的顶点染色称为是r-无圈的,如果它是正常染色,使得每一个圈C上顶点的颜色数至少为min{|C|,r}.图G的r-无圈染色数是图G的r-无圈染色中所用的最少的颜色数.我们证明了对于任意的r≥4,最大度为△、围长至少为2(r-1)△的图G的r-无圈染色数至多为6(r-1)△. A vertex coloring of a graph G is called r-acyclic if it is a proper vertex coloring such that every cycle C receives at least min{|C|,r} colors.The r-acyclic chromatic number of G is the least number of colors in an r-acyclic coloring of G.We prove that for any number r≥4,the r-acyclic chromatic number of any graph G with maximum degree△and with girth at least 2(r—1)△is at most 6(r—-1)△.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2013年第1期27-30,共4页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(11001055) 山东省自然科学基金(ZR2009AM009 ZR2011AL008)资助项目
关键词 围长 染色 无圈染色 局部引理 girth coloring acyclic coloring local lemma
  • 相关文献

参考文献4

  • 1Bondy J. A., Murty U. S. R., Graph Theory with Applications, Macmillan Press, New York, 1976.
  • 2Alon N., McDiarmid C., Reed B., Acyclic coloring of graphs, Random Structures and Algorithms, 1991, 2 277-288.
  • 3Greenhill C., Pikhurko O., Bounds on the generalized acyclic chromatic number of bounded degree graphs Graphs Combin., 2005, 21: 407-419.
  • 4ErdSs P., Lovhsz L., Problems and Results on 3-chromatic Hypergraphs and Some Related Questions, in A. Hajnal, R. Rado., V. T. S6s (Eds.), Infinite and Finite Sets Colloq. Math. Soc., Janos. Bolyai, 1957, 11 609-627.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部