期刊文献+

ω,q-Bernstein多项式的Voronovskaya-型公式

Voronovskaya-Type Formulas forω,q-Bernstein Polynomials
原文传递
导出
摘要 讨论了ω,q-Bernstein多项式的Voronovskaya-型公式及其收敛的饱和性.给出了当0<q<1,0≤ω≤1,f∈C^1[0,1]时ω,q-Bernstein多项式的Voronovskaya-型公式.如果0<ω,q<1,f∈C^1[0,1],则ω,q-Bernstein多项式的收敛阶为o(q^n)当且仅当((f(1-q^(k-1)-f(1-q)~k))/((1-q^(k-1)-(1-q^k)))=f'(1-q^k),k=1,2,…还证明f如果f在[0,1]是凸的或者在(-ε,1+ε)(ε>0)解析,则ω,q-Bernstein多项式的收敛阶为o(q^n)当且仅当f是线性函数. We discuss Voronovskaya-type formulas and saturation of convergence for w,q-Bernstein polynomials.We give explicit formulas of Voronovskaya-type for w,q-Bernstein polynomials for 0 g 1,0≤w≤1.If 0g 1,we show that the rate of convergence for w,q-Bernstein polynomials is o(q^n) if and only if(f(1-q^(k-1)-f(1-q^k))/((1-q^(k-1)-(1-q^k))= f'(1 - q^k),k = 1,2,....We also prove that if f is convex on[0,1]or analytic on (-ε,1 +ε) for someε 0,then the rate of convergence for w,q-Bernstein polynomials is o(q^n) if and only if f is linear.
作者 江海新 吴芸
机构地区 九江学院理学院
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2013年第1期135-144,共10页 Acta Mathematica Sinica:Chinese Series
基金 九江学院校级科研课题
关键词 q-整数 ω q-Bernstein多项式 Voronovskaya-型公式 饱和性 q-integer ω q-Bernstein polynomials Voronovskaya-type formulas saturation
  • 相关文献

参考文献18

  • 1Lewanowicz S., Wozny P., Generalized Bernstein polynomials, BIT, 2004, 44(1): 63-78.
  • 2Phillips G. M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 1997, 4: 511-518.
  • 3Wang H. P., Properties of convergence for w, q-Bernstein polynomials, J. Math. Anal. Appl., 2008, 340 1096-1108.
  • 4Oruc H., Phillips G. M., A generalization of the Bernstein polynomials, Proc. Edinb. Math. Soc., 1999, 42 403-413.
  • 5Ostrovska S., q-Bernstein polynomials and their iterates, J. Approx. Theory, 2003, 123(2): 232-255.
  • 6Lorentz G. G., Bernstein Polynomials, Chelsea, New York, 1986.
  • 7Kac V., Cheung P., Quantum Calculus, Springer-Verlag, New York, 2002.
  • 8Devore P. A., Lorentz G. G., Constructive Approximation, Springer-Verlag, New York, 1993.
  • 9II'inskii A., Ostrovska S., Convergence of generalized Bernstein polynomials. J. Approx. Theory, 2002, 116: 100-112.
  • 10Wang H. P., Voronovskaya-type formulas and saturation of convergence for q-Bernstein polynomials for 0 < q < 1, J. Approx. Theory, 2007, 145(2): 182-195.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部