1Lowe D G. Distinctive Image Features from Scale-Invariant Key- points. International Journal of Computer Vision, 2004, 60(2) : 91 -110.
2Mikolajczyk K, Schmid C. A Performance Evaluation of Local De- scriptors. IEEE Trans on Pattern Analysis and Machine Intelli- gence, 2005, 27 (10) : 1615 - 1630.
3Mikolajczyk K, Schmid C. Indexing Based on Scale Invariant Inter- est Points//Proc of the 8th International Conference on Computer Vision. Vancouver, Canada, 2001, I: 525-531.
4Grauman K, Darrell T. Efficient Image Matching with Distributions of Local Invariant Features//Proc of the IEEE Conference on Com- puter Vision and Pattern Recognition. San Diego, USA, 2005, n : 627 - 634.
5Csurka G, Dance C, Willamowski J, et al. Visual Categorization with Bags of Keypoints//Proc of the ECCV International Workshop on Statistical Learning in Computer Vision. Prague, Czech, 2004: 59 - 74.
6Sivic J, Zisserman A. Video Google: A Text Retrieval Approach to Object Matching in Videos// Proc of the International Conference on Computer Vision. Nice, France, 2003, Ⅱ : 1470 - 1477.
7Rubner Y, Tomasi C, Guibas L. The Earth Mover's Distance as a Metric for hnage Retrieval. International Journal of Computer Vision, 2000, 40(2): 99-121.
8Zhang J, Marszalek M, Lazebnik M, et al. Local Features and Ker- nels for Classification of Texture and Object Categories : A Compre- hensive Study. International Journal of Computer Vision, 2007, 73 (2) : 213 -238.
9Rachev S T. The Monge-Kantorovich Mass Transference Problem and Its Stochastic Applications. Theory of Probability and Its Appli- cations, 1985, 29(4) : 647 -676.
10Moreno P J, Ho P P, Vasconcelos N. A Kullback-Leibler Divergence Based Kernel for SVM Classification in Multimedia Applica- tions//Thrun S, Saul L K, Schtilkopf B, eds. Advance in Neural Information Processing Systems. Cambridge, USA : MIT Press, 2004 : 430 -441.