期刊文献+

一个分数阶微分方程四点边值问题正解的存在性

Existence of Positive Solutions for Four Points Boundary Value Problems of a Nonlinear Fractional Differential Equation
下载PDF
导出
摘要 本文研究下面的分数阶微分方程四点边值问题Dα0+u(t)+f(t,u(t))=0,0<t<1u'(0)-βu(ξ)=0,u'(1)+γu(η)=0,u″(0)={0正解的存在性,这里2<α≤3,t,s∈[0,1),1≤p≤+∞,1p+1q=1是Caputo分数阶导数,t|→Kt:[0,1]→Lp[0,1],λ.借助于格林函数的性质,应用锥拉伸和锥压缩不动点定理给出了一个正解的存在性定理. In this paper, the propertis of the Green function is discussed, the existence of of positive solution for four points boundary value problems of a nonlinear fractionaldifferential equation are obtained, where 2 〈 α≤ 3,0 ≤ξ≤η≤1,0≤β, γ≤1,D0n is the standard Caputo differentiation.
出处 《数学理论与应用》 2012年第4期33-41,共9页 Mathematical Theory and Applications
关键词 分数阶微分方程 四点边值问题 正解 锥不动点定理 Fractional Differen Tial Equation Four Points Boundary Value Problem Positive Solution Fixed -point Theorem in Cone
  • 相关文献

参考文献16

  • 1A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier B. V. , Amsterdam, The Netherlands, 2006.
  • 2Z. B, Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal. 72, (2010) 916 -924.
  • 3Xiaojie Xu , Xiangli Fei,The positive properties of Green's function for three point boundaryvalue problems of nonlinear fractional differential equations and its applications, Commun Nonlinear Sci Numer Simulat 17 (2012)1555 -1565.
  • 4郭大钧.非线性泛函分析.济南:山东科学技术出版社,2004.
  • 5Xiaojie Xu, Multiple positive solutions to singular positone and semipositone boundary value problems of nonlin- ear fractional differential equations, Mathematics Subject Clssification, (2000) 34B15.
  • 6Xiangkui Zhao, Positive solutions for four - point boundary valueproblems , Commun Nonlinear Sci Number Simu- lat ( 2011 ), doi : 10.1016/j. cnsns. 2011.01. 002.
  • 7] Xiaojie Xu, Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equa- tion, Nonlinear Analysis, 71 ( 2009 ) ,4676 - 4688.
  • 8Ravi P. Agarwal, Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations, J. Math. Anal. Appl, 371 ( 2010 ) ,57 - 68.
  • 9许晓婕,胡卫敏.一个新的分数阶微分方程边值问题正解的存在性结果[J].系统科学与数学,2012,32(5):580-590. 被引量:11
  • 10许晓婕.非线性半正分数阶微分方程多重正解的存在性[J].科学技术与工程,2010,10(35):8653-8656. 被引量:2

二级参考文献10

  • 1LiHongyu,SunJingxian.POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEM FOR A SYSTEM OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS[J].Annals of Differential Equations,2005,21(2):153-160. 被引量:19
  • 2Anatoly K A,Hari S H,Juan T J.Theory and applications of fractional differential equations.North-Holland Mathematics studies,204,Amsterdam;Elsevier Science B.V.,2006.
  • 3Oldham K B,Spanier J.The fractional calculus.New York and London; Academic Pree,1974.
  • 4Ross B(ED.).The fractional calculus and its applications.Lecture Notes in Mathematics 475,Berlin,Springer-Verlag,1975.
  • 5Nonnenmacher T F,Metzler R.On the Riemann-Liouvile fractional calculus and some recent applications.Fractals,1995;3:557-566.
  • 6Tatom FB.The relationship between fractional calculus and fractals.Fractals,1995;3:217-229.
  • 7Bai Z,Lu H.Positive solutions for boundary value problem of nonlinear fractional differential equation,J Math Anal Appl,2005;311:495-505.
  • 8Xu X,Jiang D,Yuan C.Multiple positive solutions for boundary value problem of nonlinear fractional differential equation.Nonlinear Analysis Series A:Theory,Methods and Applications,Nonlinear Analysis,2009;71:4676-4688.
  • 9Krasnoselskii M A.Positive solutions of operator equations.Noordhoff,Groningen,1964.
  • 10莫嘉琪,温朝晖.一类非线性奇摄动分数阶微分方程的渐近解[J].系统科学与数学,2010(12):1689-1694. 被引量:5

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部