摘要
土壤含水量是制约植物生长的主要因子之一,因此科学地预测土壤含水量对充分利用土壤水资源具有十分重要的意义。提出了基于BP人工神经网络的土壤含水量预测模型,BP人工神经网络采用收敛速度较快和误差精度较高的动量-自适应学习速率调整算法。并通过基于这种模型的土壤含水量预测实验,结果表明BP人工神经网络预测模型提高了收敛速度和减少陷入局部最小的可能,并且提高了预测精度。
Soil moisture is one of the factors restricting plant growth, so it has great significance to scien- tifically forecast soil moisture for making full use of soil water. In this paper, the soil moisture predicting mod- el was put forward based on the BP neural network. The BP neural network using adaptive learning rate momentum algorithm has fast convergence rate and high error precision. According to the soil moisture forecast experiment, the BP neural network predicting model increased the convergence rate, reduced the possibility of getting into local minimum, and improved the prediction accuracy.
出处
《山东农业科学》
2012年第12期11-15,共5页
Shandong Agricultural Sciences
基金
国家重点基础研究发展计划("973"计划)项目"季风-干旱环境系统与全球变化关系的综合集成研究"(2004CB720208)
国家自然科学基金项目"轨道尺度亚洲季风机制的瞬变模拟研究"(41075067)
关键词
人工神经网络
土壤含水量
预测
Artificial neural network
Soil moisture
Prediction