摘要
用Chebyshev-Galerkin谱方法求具有齐次边界条件的Helmholtz方程的数值解.构造了适当的基函数,使得离散后的变分方程为稀疏线性系统,从而提高了方法的效率.最后数值试验表明Chebyshev-Galerkin谱方法可以提高算法的效率.
In this paper, the Chebyshev--Galerkin spectral method for solving the Helmholtz equation is presented. In order to improve the efficiency, the appropariate base functions are constructed, which can lead to a sparse linear system for the discrete variational formulation. At last, the numerical experiment demonstrates that this method can enhance the efficiency.
出处
《德州学院学报》
2012年第6期7-9,13,共4页
Journal of Dezhou University
基金
国家自然科学基金资助(11072120)
宿州学院硕士科研启动基金项目(2008yss21)