期刊文献+

非扩张映像显式迭代序列强收敛性

Strong Convergence of Nonexpansive Mapping Explicit Iteration Sequence
下载PDF
导出
摘要 在具有一致Gateaux可微范数的自反严格凸Banach空间中,利用半闭原理等基本理论,证明了非扩张映像显式迭代序列的强收敛性,完善和改进了相关的证明. Under the case that the Banach space admits an analagmatic strictly convex and a uniformly Gateaux differentiable norm,we give the convergence theorems of the explicit iteration sequence for nonexpansive mapping.The main results refine and improve the corresponding proof.
作者 张学茂
出处 《通化师范学院学报》 2012年第12期5-7,共3页 Journal of Tonghua Normal University
基金 泰州师专青年专项重点课题(编号2009-BSL-21)研究成果之一
关键词 不动点 非扩张映象 显式迭代序列 fixed point nonexpansive mapping Explicit iteration sequence
  • 相关文献

参考文献2

二级参考文献30

  • 1张石生,田有先.关于Halpern的公开问题[J].数学学报(中文版),2005,48(5):979-984. 被引量:5
  • 2Browder F E. Fixed point theorems for noncompact mappings in Hilbert space [ J ]. Proc Nat Acad Sci USA, 1965,53:1272-1276.
  • 3Reich S. Strong convergence theorems for resolvents of accretive operators in Banach spaces[ J ]. J Math Anal Appl, 1980,75: 287-292.
  • 4Shioji N, Takahashi W. Strong convergence theorems for asymptotically nonexpansive mappings in Hilbert spaces[ J] .Nonlinear Anal,1998,34:87-99.
  • 5Suzuki T. On strong convergence to a common fixed point of nonexpansive semigroup in Hilbert spaces[J]. Proc Amer Math Soc ,2003,131(7) :2133-2136.
  • 6Xu H K.A strong convergence theorem for contraction semigroups in Banac.h spaces[ J]. Bull Austral Math Soc, 2005,72: 371-379.
  • 7Aleyner A, Reich S.An explicit construction of sunny nonexpansive retractions in Banach spaces[ J]. Fixed Point Theory and Applications,2005,3:295-305.
  • 8Xu H K. Strong convergence of an iterative method for nonexpansive and accretive operators[J]. J Math Anal Appl,2006,314:631-643.
  • 9Goebel K,Kirk W A. Topics in Metric Fixed Point Theory[M]. Cambridge-Cambridge University Press, 1990.
  • 10Barbu V. Nonlinear Semigroups and Differential Equations in Banach Spaces [M]. Leyden: Noord- hoff, Intemational Publishing, 1976.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部