期刊文献+

带双界限的马氏风险模型红利折现的矩

The discounted dividends moments in markov risk model with double-threshold
原文传递
导出
摘要 主要研究了一类马氏环境下双界限分红模型.不仅考虑了随机环境对保险公司的影响,而且考虑了保险公司为吸引新的顾客,采用分红策略.首先针对破产前红利折现的期望与红利折现的高阶矩得出它们分别满足的积分一微分方程组及其边界条件.其次采用Laplace-变换的方法,得到了此积分-微分方程组的解. The discounted dividends was considered in Markov risk model with Double -threshold. The stochastic environment would influence the insurance company, the insurance company would use dividend strategy for attracting new customers. The integro - differential equations were obtained that about the moments of the discounted dividends and the boundary conditions prior to ruin. At the same time, the explicit solutions of equations were gotten by using the method of Laplace -transform.
作者 刘丽芳
出处 《湖南科技大学学报(自然科学版)》 CAS 北大核心 2012年第4期117-120,共4页 Journal of Hunan University of Science And Technology:Natural Science Edition
基金 湖南省自然科学基金(09JJ6016) 湖南省教育厅优秀青年项目(10B073)
关键词 风险模型 红利 Laplace-变换方法 risk model dividend method of laplace - transform
  • 相关文献

参考文献13

  • 1De F B. Su Un' impostazione Ahernativa dell Teoria Colletiva delRischio [ J ] Transactions of the XV International Congress of Actuaries, 1957,2:433 -443.
  • 2高合理,尹传存.复合Poisson模型中“双界限”分红问题[J].高校应用数学学报(A辑),2008,23(4):379-388. 被引量:1
  • 3Janssen J, Reinhard J. Probabiliti6s de ruine pour une class de mode1es de risqu6 semi - Markoviens [ J ]. ASTIN Bulletin, 1985, 15(2) :123 -134.
  • 4Albreeher H, Boxma O. On the discounted penalty function in a Markov - dependent risk model [ J ]. Insurance Mathematies and Eeonomics ,2004,35 ( 2 ) :245 - 254.
  • 5Gerber H. An introduction to mathematical risk theory [ M ]. Philadelphia : Huebner Foundation Monograph Series 8,1979.
  • 6Asmussen S. Ruin probabilities [ M ]. Singapore : World Scientitc,2000.
  • 7Gerber H. On the probability of ruin in the presence of a linear dividend barrier[ J ]. Scandinavian Actuarial Journal, 1981 ( 4 ) : 105 -115.
  • 8周明,郭军义.CLASSICAL RISK MODEL WITH THRESHOLD DIVIDEND STRATEGY[J].Acta Mathematica Scientia,2008,28(2):355-362. 被引量:6
  • 9张春生,吴荣.古典风险模型的极值联合分布[J].数学物理学报(A辑),2003,23(1):25-30. 被引量:9
  • 10Lu Y,Li S M. On the probability of nlin in a Markov - modulated risk model[ J ]. Insurance Mathematics and Economics, 2005,37 (2) :522 -532.

二级参考文献17

  • 1Ming Zhou,Li Wei,Jun-yi Guo.Some Results behind Dividend Problems[J].Acta Mathematicae Applicatae Sinica,2006,22(4):681-686. 被引量:1
  • 2WANG P G, WU Y H. Forced oscillation of a class of neutral hyperbolic differential equations[ J ]. J Comput Appl Math, 2005, 177(2) :301-308.
  • 3WANG P G, Teo K L. Oscillation of solutions of parabolic differential equations of neutral type [ J ]. J Math Anal Appl, 2005, 311(2) :616-625.
  • 4YANG Q G. On the oscillation of certain nonlinear neutral partial differential equations[J]. Appl Math Lett, 2007, 20:900-907.
  • 5WANG P G, WU Y H, CACCETI'A L. Oscillation criteria for boundary value problems of high-order partial functional differen- tial equations[ J]. J Comput Appl Math,2007,206:567-577.
  • 6LUO L P, LIAO J D, GAO Z H. Oscillation of systems of impulsive delay hyperbolic equations[ J ]. Appl Math Appl,2008,1 (2) :147-154.
  • 7SHOUKAKU Y. Forced oscillatory result of hyperbolic equations with continuous distributed deviating arguments[ J]. Appl Math Lett, 2011,24 :407-411.
  • 8GILBARG D, TRUDINGER N S. Elliptic partial equations of second order[ M ]. Berlin: Springer-Verlag, 1977.
  • 9Yin Chuancun.Discussion of"On optimal dividend strategies in the compound Poisson model,by H U Gerber and Elias S W Shiu"[].North American Archaeologist.2006
  • 10Lin Sheldon X,,Willmot G E.Analysis of a defective renewal equation arising in ruin the- ory[].Insurance Mathematics Economics.1999

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部