摘要
Combining the passive decoy-state idea with the active decoy-state idea, a non-orthogonal (SARG04) decoy-state protocol with one vacuum and two weak decoy states is introduced based on a heralded pair coherent state photon source for quantum key distribution. Two special cases of this protocol are deduced, i.e., a one-vacuum-and-one-weak-decoy-state protocol and a one-weak-decoy-state protocol. In these protocols, the sender prepares decoy states actively, which avoids the crude estimation of parameters in the SARG04 passive decoy-state method. With the passive decoy-state idea, the detection events on Bob's side that are non-triggered on Alice's side are not discarded, but used to estimate the fractions of single-photon and two-photon pulses, which offsets the limitation of the detector's low efficiency and overcomes the shortcoming that the performance of the active decoy-state protocol critically depends on the efficiency of detector. The simulation results show that the combination of the active and passive decoy-state ideas increases the key generation rate. With a one-vacuum-and-two-weak-decoy-state protocol, one can achieve a key generation rate that is close to the theoretical limit of an infinite decoy-state protocol. The performance of the other two protocols is a little less than with the former, but the implementation is easier. Under the same condition of implementation, higher key rates can be obtained with our protocols than with existing methods.
Combining the passive decoy-state idea with the active decoy-state idea, a non-orthogonal (SARG04) decoy-state protocol with one vacuum and two weak decoy states is introduced based on a heralded pair coherent state photon source for quantum key distribution. Two special cases of this protocol are deduced, i.e., a one-vacuum-and-one-weak-decoy-state protocol and a one-weak-decoy-state protocol. In these protocols, the sender prepares decoy states actively, which avoids the crude estimation of parameters in the SARG04 passive decoy-state method. With the passive decoy-state idea, the detection events on Bob's side that are non-triggered on Alice's side are not discarded, but used to estimate the fractions of single-photon and two-photon pulses, which offsets the limitation of the detector's low efficiency and overcomes the shortcoming that the performance of the active decoy-state protocol critically depends on the efficiency of detector. The simulation results show that the combination of the active and passive decoy-state ideas increases the key generation rate. With a one-vacuum-and-two-weak-decoy-state protocol, one can achieve a key generation rate that is close to the theoretical limit of an infinite decoy-state protocol. The performance of the other two protocols is a little less than with the former, but the implementation is easier. Under the same condition of implementation, higher key rates can be obtained with our protocols than with existing methods.
基金
Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA7014061)
the Science Foundation of Naval University of Engineering, China (Grant No. HGDQNJJ11022)