期刊文献+

Electrical characteristics of AlInN/GaN HEMTs under cryogenic operation

Electrical characteristics of AlInN/GaN HEMTs under cryogenic operation
下载PDF
导出
摘要 Electrical properties of an AIlnN/GaN high-electron mobility transistor (HEMT) on a sapphire substrate are investigated in a cryogenic temperature range from 295 K down to 50 K. It is shown that drain saturation current and conductance increase as transistor operation temperature decreases. A self-heating effect is observed over the entire range of temperature under high power consumption. The dependence of channel electron mobility on electron density is investigated in detail. It is found that aside from Coulomb scattering, electrons that have been pushed away from the AIInN/GaN interface into the bulk GaN substrate at a large reverse gate voltage are also responsible for the electron mobility drop with the decrease of electron density. Electrical properties of an AIlnN/GaN high-electron mobility transistor (HEMT) on a sapphire substrate are investigated in a cryogenic temperature range from 295 K down to 50 K. It is shown that drain saturation current and conductance increase as transistor operation temperature decreases. A self-heating effect is observed over the entire range of temperature under high power consumption. The dependence of channel electron mobility on electron density is investigated in detail. It is found that aside from Coulomb scattering, electrons that have been pushed away from the AIInN/GaN interface into the bulk GaN substrate at a large reverse gate voltage are also responsible for the electron mobility drop with the decrease of electron density.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期482-485,共4页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No. 61204018)
关键词 AIInN/GaN heterostructure high-electron mobility transistor (HEMT) cryogenic temperature two-dimensional electron gas (2DEG) mobility AIInN/GaN heterostructure, high-electron mobility transistor (HEMT), cryogenic temperature, two-dimensional electron gas (2DEG) mobility
  • 相关文献

参考文献22

  • 1Sarazin N, Morvan E, di Forte Poisson M A, Oualli M, Gaqui~re C, Jardel O, Drisse O, Tordjman M, Magis M and Delage S L 2010 IEEE Electron Dev. Lett. 31 11.
  • 2Duan B X and Yang Y T 2012 Chin. Phys. B 21 057201.
  • 3Tirelli S, Marti D, Sun H F, Alt A R, Carlin J F C, Grandjean N and Bolognesi C R 2011.
  • 4IEEE Electron Dev. Lett. 32 1364.
  • 5Chabak K D, Trejo M, Crespo A, Walker D E, Yang J, Gaska R, Kossler M, Gillespie J K, Jessen G H, Trimble V and Via G D 2010 1EEE Elec- tron Dev. Lett. 31 561.
  • 6Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Bi Z W, Xu S R, Xue J S, Ma X H, Wang C, Yang L A, Zhang J F and Kuang X W 2011 Chin. Phys. B 20 017203.
  • 7Sattu A, Billingsley D, Deng J, Yang J, Gaska R, Shur M and Simin G 2011 The 69th Device Research Conference June 20-22, 2011 Univer- sity of California, Santa Barbara, CA, USA, p. 55.
  • 8Vetury R, Zhang Q, Keller S and Mishra U K 2001 1EEE Trans. Elec- tron Dev. 48 560.
  • 9Leach J H, Wu M, Ni X, Li X, Ozgur U and Morkoc H 2010 Phys. Status Solidi A 207 211.
  • 10Mikulics M, Stoklas R, Dadgar A, Gregu~ov~ D, Nov~k J, Griitzmacher D, Krost A and Kordo~ P 2010 Appl. Phys. Lett. 97 173505.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部