期刊文献+

基于和声搜索算法的地下水污染源与未知含水层参数的同步反演研究 被引量:13

Simultaneous identification of groundwater contaminant source and aquifer parameters by harmony search algorithm
原文传递
导出
摘要 地下水污染源反演问题和含水层参数反演问题都是典型的地下水逆问题。在未知含水层参数(渗透系数、弥散度等)等先决信息的情况下进行地下水污染源反演计算时,需要根据已有的监测数据(水位和浓度等)对地下水污染源和未知含水层参数进行同步反演。在同步反演优化问题中,决策变量包括污染源位置、强度以及待求的含水层参数。本文对同步反演模型的框架组成(包括污染物迁移模型和反演优化模型)进行分析后,在对已有的各种和声搜索改进算法进行研究的基础上结合同步反演模型提出一种改进的和声搜索算法,最后将同步反演模型和改进的和声搜索算法应用于具体的算例研究。研究表明,改进的和声搜索算法具有算法稳定高效、求解精度高等特点,能够广泛应用于复杂的地下水污染源和含水层参数反演问题。 Both groundwater contaminant source identification and aquifer parameter identification belong to groundwater inverse problems. In absence of prior information about aquifer parameter, simultaneous identification contaminant source and aquifer parameters are needed on the basis of the obtained monitoring data. In the simultaneous identification problems, the location and strength of contaminant sources, the unknown aquifer parameters are taken as the decision variables. In this paper, the framework of the simultaneous identification model, including simulation model and optimization model, is firstly introduced, and then an improved harmony search algorithm is proposed on the basis of several existing improved harmony search algorithms and combined with the simuhaneous identification model. Finally, the simultaneous identification model, with improved harmony search algorithm, is applied to case study. The case studies indicate that the improved harmony search algorithm is stable and efficient with relative fast convergence speed and the high robustness, and applicable to groundwater contaminant source identification and aquifer parameter identification.
出处 《水利学报》 EI CSCD 北大核心 2012年第12期1470-1477,共8页 Journal of Hydraulic Engineering
基金 国家自然科学青年基金资助项目(41002078) 光华同济土木学院基金资助
关键词 同步反演 污染源反演 含水层参数反演 和声搜索算法 地下水逆问题 simultaneous identification contaminant source identification aquifer parameter identification harmony search algorithm groundwater inverse problem
  • 相关文献

参考文献25

  • 1Atmadja J, Bagtzoglou A C . Pollution source identification in heterogeneous porous media[J] . Water Resources Research, 2001, 37(8): 2113-2125.
  • 2Singh R M, Datta B, Jain A . Identification of unknown groundwater pollution sources using Artificial Neural Net- works[J] . Journal of Water Resources Planning and Management, 2004, 130(6) : 506-513 .
  • 3Singh R M, Datta B . Identification of groundwater pollution sources using GA-based Linked Simulation Optimiza- tion Model[ J ] . Journal of Hydrologic Engineering, 2006, 11 (2) : 101-109 .
  • 4Yeh H, Chang T, Lin Y . Groundwater contaminant source identification by a hybrid heuristic approach[J] . Wa- ter Resources Research, 2007, 43(W09420) : 1-16 .
  • 5Ayvaz M T. A linked simulation-optimization model for solving the unknown groundwater pollution source identifi- cation problems[J] . Journal of Contaminant Hydrology, 2010, 117(1-4) : 46-59.
  • 6Li Z, Mao X . Global multiquadric collocation method for groundwater contaminant source identification[J] . Envi- ronmental Modelling & Software, 2011, 26(12) : 1611-1621 .
  • 7Mahar P S, Datta B . Optimal identification of ground-water pollution sources and parameter estimation[J] . Jour- nal of Water Resources Planning and Management, 2001, 127( 1 ) : 20-29 .
  • 8Datta B, Chakrabarty D, Dhar A . Simultaneous identification of unknown groundwater pollution sources and esti- mation of aquifer parameters[ J] . Journal of Hydrology, 2009, 376(1-2) : 48-57 .
  • 9Sun N . Inverse problems in groundwater modeling[ M ] . Netherlands: Kluwer Academic Publishers, 1999.
  • 10Mahinthakumar G K, Sayeed M . Hybrid genetic algorithm- Local search methods for solving groundwater source identification inverse problems [J] . Journal of water Resources Planning and Management, 2005, 131 (1) : 45-57 .

二级参考文献91

共引文献50

同被引文献107

引证文献13

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部