期刊文献+

技术演化:关于中国技术进步偏差的研究 被引量:2

Technical Evolution:The Biases of Technical Change of China
下载PDF
导出
摘要 近几年,关于技术进步的理论和经验研究开始关注刻画和估计技术进步的偏差,其反映的是技术进步中伴随的生产结构变化。本文使用中国分行业的面板数据,在目前仅有的两种计量方法外,结合中国数据特点,在一个新的框架内估计了中国从1982年到2000年间的技术进步偏差。各种统计检验表明,本文的方法能够合理地被用来估计技术进步偏差。结果显示,1982年到2000年间,从全行业的角度看,生产结构变得更倚重于能源与非能源要素,而劳动要素在生产中的影响相对有所削弱。 Recent development in theoretical and empirical studies about modeling technical change has shifted the attention to the biases of technical change, which reflects the changes in the structure of production with technical progress. This paper uses the panel data that contains 33 industries of China and proposes a new framework to estimate the biases of technical change from 1982 to 2000, which is a complement to the existing two frame- works. The statistical tests in this paper suggest that our framework can deal with the issue well. According to the results of estimation, it can be found that the production on average become more dependent on the energy and non-energy inputs over the sample period; meanwhile, the role of labor input in the production is weakened.
作者 卯光宇
出处 《南开经济研究》 CSSCI 北大核心 2012年第5期65-78,共14页 Nankai Economic Studies
关键词 技术进步偏差 截面相关 因子结构 Biases of Technical Change Cross-sectional Dependence Factor Structure
  • 相关文献

参考文献29

  • 1Acemoglu, D. Directed Technical Change [J]. Review of Economic Studies, 2002a, 69: 781- 810.
  • 2Acemoglu, D. Technical Change, Inequality, and the Labor Market [J]. Journal of Economic Literature, 2002b, 40: 7-72.
  • 3Acemoglu, D. Equilibrium Bias ofTechnology[J]. Econometrica, 2007, 75: 1371-410.
  • 4Ahn, C. S. and Horenstein, R. A. Eigenvalue Ratio Test for the Number of Factors [R]. Working Paper, University of Chicago, 2009.
  • 5Bai, J. Panel Data Models with Interactive Fixed Effects [J]. Econometrica, 2009a, 77: 1229- 79.
  • 6Bai, J. Supplement to 'Panel Data Models with Interactive Fixed Effects': Technical Details and Proofs [R]. Econometrica Supplementary Material, 2009b.
  • 7Bai, J. and Ng, S. Determining the Number of Factors in Approximate Factor Models [J]. Econometrica, 2002, 70. 191-221.
  • 8Bai, J. and Ng, S. Large Dimensional Factor Analysis. Foundations and Trends in Econometrics Vol 3 [M]. 2008.
  • 9Binswanger, R H. The Measurement of Technical Change Biases with Many Factors of Produc- tion [J]. American Economic Review, 1974a, 64: 964--76.
  • 10Binswanger, E H. A Microeconomic Approach to Induced Innovation [J]. Economic Journal, 1974b, 84: 940-958.

同被引文献34

  • 1郑照宁,刘德顺.考虑资本-能源-劳动投入的中国超越对数生产函数[J].系统工程理论与实践,2004,24(5):51-54. 被引量:83
  • 2Anderson R. K. , Moroney J. R. , 1993, Morishima Elasticities of Substitution with Nested Produc- tion Functions [J], Economics Letters, 42 (2-3), 159-166.
  • 3Berndt E. , Wood D. , 1975, Technology, Prices, and the Derived Demand for Energy [J], Re- view of Economics and Statistics, 57 (3), 259-268.
  • 4Binswanger H. P. , 1974, A Cost Function Approach to the Measurement of Elasticities of Factor Demand and Elasticities of Substitution [J], American Journal of Agricultural Economics, 56 (1), 377-386.
  • 5Blackorby C,, Russell tL, 1981, The Morishima ELasticity of Substitution, Syrranetry , Omstanc y , Separa bility, and Its ReLationship to the Hicks and Allen Elasticities [J], Review of Economic Studies, 48 (1), 147-158.
  • 6Blackorby C. , Russell R. , 1989, Will the Real Elasticity of Substitution Please Stand Up? (A Comparison of the Allen/Uzawa and Morishima Elasticities) [J], American Economic Review, 79 (4), 882-888.
  • 7Boisvert R. N., 1982, The Translog Production Function.. Its Properties, Its Several Interpreta- tions and Estimation Problems [R], Cornell University, Working Paper, No. A. E. Res. 82-28.
  • 8Cao J. , Ho M. , Jorgenson D. , Ren R. , Sun L. , Yue X. , 2009, Industrial and Aggregate Meas- ures of Productivity Growth in China [J], Review of Income and Wealth, 55 (s1), 485-513.
  • 9Frenger P. , 1985, A Directional Shadow Elasticity of Substitution [R], Norway, Central Bureau of Statistics, Discussion Paper, No. 7.
  • 10Christiansen L. R. , Jorgensen D. W, Lau L. J. , 1971, Conjugate Duality and the Transcendental Logarithmic Production Function [J], Econometrica, 39 (4), 255-256.

引证文献2

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部