期刊文献+

Sharp Interpolation Inequalities on the Sphere:New Methods and Consequences 被引量:1

Sharp Interpolation Inequalities on the Sphere:New Methods and Consequences
原文传递
导出
摘要 This paper is devoted to various considerations on a family of sharp interpo- lation inequalities on the sphere, which in dimension greater than 1 interpolate between Poincare, logarithmic Sobolev and critical Sobolev (Onofri in dimension two) inequalities. The connection between optimal constants and spectral properties of the Laplace-Beltrami operator on the sphere is emphasized. The authors address a series of related observations and give proofs based on symmetrization and the ultraspherical setting.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2013年第1期99-112,共14页 数学年刊(B辑英文版)
基金 Project supported by ANR grants CBDif and NoNAP,the ECOS project (No. C11E07) the Chileanresearch grants Fondecyt (No. 1090103) Fondo Basal CMM Chile,Project Anillo ACT 125 CAPDEand the National Science Foundation (No.DMS 0901304)
关键词 Sobolev inequality INTERPOLATION Gagliardo-Nirenberg inequality Logarithmic Sobolev inequality Heat equation 插值 球体 Sobolev 不等式 夏普 光谱特性 最佳常数 庞加莱
  • 相关文献

参考文献37

  • 1Arnold, A., Bartier, J. P. and Dolbeault, J., Interpolation between logarithmic Sobolev and Poincar~ inequalities, Commun. Math. Sci., 5, 2007, 971-979.
  • 2Arnold, A. and Dolbeault, J., Refined convex Sobolev inequalities, J. Funct. Anal., 225, 2005, 337-351.
  • 3Arnold, A., Markowich, P., Toscani, G., et al., On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Part. Diff. Eq., 26, 2001, 43-100.
  • 4Aubin, T., Probl~mes isop~rim~triques et espaces de Sobolev, J. Diff. Geom., 11, 1976, 573-598.
  • 5Baernstein, A. and Taylor, B. A., Spherical rearrangements, subharmonic functions, and *-functions in n-space, Duke Math. J., 43, 1976, 245-268.
  • 6Bakry, D., Une suite d'inegalites remarquables pour les op@rateurs ultraspheriques, C. R. Acad. Sci. Paris Ser. I Math., 318, 1994, 161-164.
  • 7Bakry, D. and Bentaleb, A., Extension of Bochner-Lichn@rowicz formula on spheres, Ann. Fac. Sci. Toulouse Math., 14(6), 2005, 161-183.
  • 8Bakry, D. and l~mery, M., Hypercontractivit6 de semi-groupes de diffusion, C. R. Acad. Sci. Paris Sdr. I Math., 299, 1984, 775-778.
  • 9Bakry, D. and Emery, M., Diffusions hypercontractives, seminaire de probabilites, XIX, 1983/1984, Lecture Notes in Math., Vol. 1123, Springer-Verlag, Berlin, 1985, 177-206.
  • 10Beckner, W., A generalized Poincare inequality for Gaussian measures, Proc. Amer. Math. Soc., 105, 1989, 397-400.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部