期刊文献+

改进DOAS技术在混合气体中的定量分析 被引量:4

Improvement of DOAS Technology in the Application of Mixed Gas Quantitative Analysis
下载PDF
导出
摘要 针对差分吸收光谱技术(DOAS)中混合气体吸收光谱重叠问题,提出了一种建立在粒子群优化算法和最小二乘支持向量机算法融合上的改进的DOAS方法.采用最小二乘支持向量机技术对SO2、NO分别建立定量分析模型,并运用粒子群优化算法的强大寻优能力对最小二乘支持向量机算法中的参数进行寻优,最后对定量分析模型进行重建.实验结果表明,采用数据融合的DOAS方法,在解决混合气体光谱重叠问题上切实可行,分别将SO2、和NO最大绝对误差率提高到1.200 0%和2.691 8%,具有一定的实际意义. According to difference absorption spectrum,mixed gas absorption spectrum in technology overlapping problem,a DOAS technology based on the PSO and LS-SVM fusion method was proposed.First,SO2,NO respectively to construct a quantitative analysis model by LS-SVM.Then,using PSO's strong optimization ability of least square support vector machine(SVM) the optimization of the parameters of the algorithm,and then,LS-SVM's parameter is optimized with PSO of the powerful searching ability.Finally,we rebuilt the quantitative analysis model.Experiments show that using the improved DOAS method is feasible in solving the mixed gas spectrum overlap problem,which has certain practical significance.
出处 《哈尔滨理工大学学报》 CAS 2012年第6期110-113,共4页 Journal of Harbin University of Science and Technology
关键词 DOAS 主成分分析 最小二乘支持向量机 粒子群优化算法 定量分析 DOAS PCA LS-SVM PSO quantitative analysis
  • 相关文献

参考文献10

二级参考文献70

共引文献159

同被引文献45

  • 1吴凯勋.DOAS系统与传统点式仪器在空气自动监测应用中的对比分析[J].石油化工安全环保技术,2012,28(2):37-40. 被引量:2
  • 2李春茂,肖建,张玥.基于LS-SVM的网络化控制系统自适应预测控制[J].系统仿真学报,2007,19(15):3494-3498. 被引量:8
  • 3国家环境保护总局规划与财务司.国家环境保护"十五"计划读本[M].北京:中国环境科学出版社,2001.
  • 4Seheider W, Moortgat G K. Absorption cross-sections of NO2 in the UV and visible region ( 200 - 700 nm ) at 298 K [ J ]. Journal of Photochemistry and Photobiology A : Chemistry, 1987,40 : 196-217.
  • 5郭振铎.一种新型便携式烟道气与管道气气体原位监测仪:中国,201210271665.7[P].2012-07-31.
  • 6DINGS F,HUA X P,YU Z J. An overview on nonparallel hyper- plane support vector machine algorithms [ J ]. Neural Computing and Applications ,2013,25 ( 5 ) :975 -982.
  • 7SUYKENS J A K,VANDEWALLE J. Least squares support vector machines classifiers [ J ]. Neural Processing Letters, 1999,9 ( 3 ) : 293 - 300.
  • 8HU T J, HUANG X X, TAN Q. Time delay prediction for space teleoperation based on non-Gaussian auto-regressive model [ C ]// 2012 Proceedings of International Conference on Modelling, Iden- tification & Control (ICMIC) , June 24-26, 2012, Wuhan, Chi- na. 2012:567-572.
  • 9YANG M, RU J, LI X R, et al. Predicting Internet end-to-end delay: a multiple-model approach [ C ]//24th Annual Joint Con- ference of the IEEE Computer and Communications Societies, March 13 -17, 2005, Miami, USA. 2005, 4:2815-2819.
  • 10TABIB S R S, JALALI A A. Modelling and prediction of internet time-delay by feed-forward multi-layer perceptron neural network [ C ]//Second UKSIM European Symposium on Computer Model- ing and Simulation, Sept 8 - 10, 2008, Liverpool, England. 2008:611 -616.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部